Privacy-Preserving Non-Wearable Occupancy Monitoring System Exploiting Wi-Fi Imaging for Next-Generation Body Centric Communication
Abstract
:1. Introduction
2. Related Work
3. Security and Privacy in Body Centric Communication
4. Wi-Fi Sensing for Occupancy Monitoring
4.1. Data Processing and Signal Acquisition
4.2. Experimental Setup and Trials
4.3. Scalogram for Activity Detection and Occupancy Estimation
4.4. Autoencoder for Scalogram Classification
4.5. The Proposed Encryption Scheme
- 1.
- Let I be the original image scalogram having size . Apply SHA-512 to get a hash value for initial conditions that can be utilized in chaos maps.
- 2.
- Save SHA-512 results in . The hexadecimal value is = = , where .
- 3.
- Generate keys from the hash value. Convert hash value to decimal and apply modulus operation and set initial conditions for Chirikov standard map:= convert2decimal().= mod(), where is .= convert2decimal().= mod().
- 4.
- Set initial condition value for Intertwining map:= convert2decimal().= mod(1).= convert2decimal().= mod(1).= () mod(1).
- 5.
- Separate each red, green, and blue channel and save the results in , , and , respectively.
- 6.
- Iterate Chirikov map times, randomly shuffle each pixel of , , and , and the save results in , , and , respectively, through the random sequences obtained from Chirikov map.
- 7.
- Iterate Intertwining map times, multiply the obtained value with , and save the results in a row matrix A. Apply the modulus operator and save the results in B:B = A mod(256).
- 8.
- Reshape B into three separate matrices, i.e, , , and , and apply XOR operation:...
- 9.
- Slightly change the initial conditions by adding a value := ( + ) mod ().= ( + ) mod ().= ( + ) mod(1).= ( + ) mod(1).= ( + + ) mod(1).
- 10.
- Repeat Steps 6–9 times, and select = 4 for a good confusion and diffusion.
- 11.
- Combine each channel, , , and , and save the encrypted scalogram results in C.
4.6. Encryption and Security Analysis
5. Classification Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Allouhi, A.; El Fouih, Y.; Kousksou, T.; Jamil, A.; Zeraouli, Y.; Mourad, Y. Energy consumption and efficiency in buildings: Current status and future trends. J. Clean. Prod. 2015, 109, 118–130. [Google Scholar] [CrossRef]
- Yang, J.; Santamouris, M.; Lee, S.E. Review of occupancy sensing systems and occupancy modeling methodologies for the application in institutional buildings. Energy Build. 2016, 121, 344–349. [Google Scholar] [CrossRef]
- Cao, N.; Ting, J.; Sen, S.; Raychowdhury, A. Smart sensing for HVAC control: Collaborative intelligence in optical and IR cameras. IEEE Trans. Ind. Electron. 2018, 65, 9785–9794. [Google Scholar] [CrossRef]
- Zou, H.; Jiang, H.; Luo, Y.; Zhu, J.; Lu, X.; Xie, L. Bluedetect: An ibeacon-enabled scheme for accurate and energy-efficient indoor-outdoor detection and seamless location-based service. Sensors 2016, 16, 268. [Google Scholar] [CrossRef] [Green Version]
- Weekly, K.; Zou, H.; Xie, L.; Jia, Q.S.; Bayen, A.M. Indoor occupant positioning system using active RFID deployment and particle filters. In Proceedings of the 2014 IEEE International Conference on Distributed Computing in Sensor Systems, Marina Del Rey, CA, USA, 26–28 May 2014; pp. 35–42. [Google Scholar]
- Huang, B.; Qi, G.; Yang, X.; Zhao, L.; Zou, H. Exploiting cyclic features of walking for pedestrian dead reckoning with unconstrained smartphones. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 374–385. [Google Scholar]
- Yang, X.; Fan, D.; Ren, A.; Zhao, N.; Shah, S.A.; Alomainy, A.; Ur-Rehman, M.; Abbasi, Q.H. Diagnosis of the Hypopnea syndrome in the early stage. Neural Comput. Appl. 2019, 32, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Ren, A.; Shah, S.A.; Hu, F.; Zhao, N.; Yang, X.; Haider, D.; Zhang, Z.; Zhao, W.; Abbasi, Q.H. Monitoring of atopic dermatitis using leaky coaxial cable. Healthc. Technol. Lett. 2017, 4, 244–248. [Google Scholar] [CrossRef]
- Yang, X.; Shah, S.A.; Ren, A.; Zhao, N.; Zhao, J.; Hu, F.; Zhang, Z.; Zhao, W.; Rehman, M.U.; Alomainy, A. Monitoring of patients suffering from REM sleep behavior disorder. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 138–143. [Google Scholar] [CrossRef]
- Qiu, Z.; Zou, H.; Jiang, H.; Xie, L.; Hong, Y. Consensus-based parallel extreme learning machine for indoor localization. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Zou, H.; Chen, Z.; Jiang, H.; Xie, L.; Spanos, C. Accurate indoor localization and tracking using mobile phone inertial sensors, Wi-Fi and iBeacon. In Proceedings of the 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, USA, 27–30 March 2017; pp. 1–4. [Google Scholar]
- Shah, S.A.; Fioranelli, F. RF Sensing Technologies for Assisted Daily Living in Healthcare: A Comprehensive Review. IEEE Aerosp. Electron. Sys. Mag. 2019, 34, 26–44. [Google Scholar] [CrossRef] [Green Version]
- Haider, D.; Ren, A.; Fan, D.; Zhao, N.; Yang, X.; Shah, S.A.; Hu, F.; Abbasi, Q.H. An efficient monitoring of eclamptic seizures in wireless sensors networks. Comput. Electr. Eng. 2019, 75, 16–30. [Google Scholar] [CrossRef]
- Tanoli, S.A.K.; Rehman, M.; Khan, M.B.; Jadoon, I.; Ali Khan, F.; Nawaz, F.; Shah, S.A.; Yang, X.; Nasir, A.A. An experimental channel capacity analysis of cooperative networks using Universal Software Radio Peripheral (USRP). Sustainability 2018, 10, 1983. [Google Scholar] [CrossRef] [Green Version]
- Fioranelli, F.; Le Kernec, J.; Shah, S.A. Radar for Health Care: Recognizing Human Activities and Monitoring Vital Signs. IEEE Potential 2019, 38, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Weekly, K.; Jin, M.; Zou, H.; Hsu, C.; Soyza, C.; Bayen, A.; Spanos, C. Building-in-Briefcase: A rapidly-deployable environmental sensor suite for the smart building. Sensors 2018, 18, 1381. [Google Scholar] [CrossRef] [Green Version]
- Duarte, C.; Van Den Wymelenberg, K.; Rieger, C. Revealing occupancy patterns in an office building through the use of occupancy sensor data. Energy Build. 2013, 67, 587–595. [Google Scholar] [CrossRef]
- Erickson, V.L.; Carreira-Perpiñán, M.Á.; Cerpa, A.E. OBSERVE: Occupancy-based system for efficient reduction of HVAC energy. In Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, Chicago, IL, USA, 12–14 April 2011; pp. 258–269. [Google Scholar]
- Yang, X.; Shah, S.A.; Ren, A.; Zhao, N.; Fan, D.; Hu, F.; Ur Rehman, M.; von Deneen, K.M.; Tian, J. Wandering Pattern Sensing at S-Band. IEEE J. Biomed. Health Inf. 2018, 22, 1863–1870. [Google Scholar] [CrossRef]
- Kumar, R.; Mukesh, R. State of the art: Security in wireless body area networks. Inter. J. Comput. Sci. Eng. Technol. (IJCSET) 2013, 4, 622–630. [Google Scholar]
- Al-Janabi, S.; Al-Shourbaji, I.; Shojafar, M.; Shamshirband, S. Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egypt. Inform. J. 2017, 18, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Mert, A.C.; Öztürk, E.; Savaş, E. Design and Implementation of Encryption/Decryption Architectures for BFV Homomorphic Encryption Scheme. IEEE Transact. VLSI Syst. 2020, 28, 353–362. [Google Scholar] [CrossRef]
- Zou, H.; Jiang, H.; Yang, J.; Xie, L.; Spanos, C. Non-intrusive occupancy sensing in commercial buildings. Energy Build. 2017, 154, 633–643. [Google Scholar] [CrossRef]
- Shah, S.A.; Yang, X.; Abbasi, Q.H. Cognitive health care system and its application in pill-rolling assessment. Int. J. Numer. Model. Electron. Net. Device. Field. 2019, 32, e2632. [Google Scholar] [CrossRef]
- Haider, D.; Shah, S.A.; Shah, S.I.; Iftikhar, U. Mimo network and the alamouti, stbc (space time block coding). Am. J. Electric. Electron. Eng. 2017, 5, 23–27. [Google Scholar]
- Shah, S.I.; Shah, S.Y.; Shah, S.A. Intrusion Detection through Leaky Wave Cable in Conjunction with Channel State Information. In Proceedings of the IEEE 2019 UK/China Emerging Technologies (UCET), Glasgow, UK, 21–22 August 2019; pp. 1–4. [Google Scholar]
- Ayyaz, S.; Qamar, U.; Nawaz, R. HCF-CRS: A Hybrid Content based Fuzzy Conformal Recommender System for providing recommendations with confidence. PLoS ONE 2018, 13, 0204849. [Google Scholar] [CrossRef] [Green Version]
- Anwaar, F.; Iltaf, N.; Afzal, H.; Nawaz, R. HRS-CE: A hybrid framework to integrate content embeddings in recommender systems for cold start items. J. Comput. Sci. 2018, 29, 9–18. [Google Scholar] [CrossRef]
- Yunus, R.; Arif, O.; Afzal, H.; Amjad, M.F.; Abbas, H.; Bokhari, H.N.; Haider, S.T.; Zafar, N.; Nawaz, R. A framework to estimate the nutritional value of food in real time using deep learning techniques. IEEE Access 2018, 7, 2643–2652. [Google Scholar] [CrossRef]
- Qadir, H.; Khalid, O.; Khan, M.U.; Khan, A.U.R.; Nawaz, R. An optimal ride sharing recommendation framework for carpooling services. IEEE Access 2018, 6, 62296–62313. [Google Scholar] [CrossRef]
- Bahi, J.M.; Couchot, J.F.; Guyeux, C. Quality analysis of a chaotic proven keyed hash function. Int. J. Adv. Internet Technol. 2012, 5, 26–33. [Google Scholar]
- Ahmad, J.; Hwang, S.O. A secure image encryption scheme based on chaotic maps and affine transformation. Multimed. Tool. Appl. 2016, 75, 13951–13976. [Google Scholar] [CrossRef]
- Masood, J.A.F.; Shah, S.A.; Jamal, S.S.; Hussain, I. A Novel Secure Occupancy Monitoring Scheme Based on Multi-Chaos Mapping. Symmetry 2020, 12, 350. [Google Scholar]
- Ahmad, J.; Hwang, S.O. Chaos-based diffusion for highly autocorrelated data in encryption algorithms. Nonlinear Dyn. 2015, 82, 1839–1850. [Google Scholar] [CrossRef]
- Ahmad, J.; Khan, M.A.; Hwang, S.O.; Khan, J.S. A compression sensing and noise-tolerant image encryption scheme based on chaotic maps and orthogonal matrices. Neural Comput. Appl. 2017, 28, 953–967. [Google Scholar] [CrossRef]
- Masood, F.; Ahmad, J.; Shah, S.A.; Jamal, S.S.; Hussain, I. A Novel Hybrid Secure Image Encryption Based on Julia Set of Fractals and 3D Lorenz Chaotic Map. Entropy 2020, 22, 274. [Google Scholar] [CrossRef] [Green Version]
Security Parameter | Original Pick up Scalogram | Encrypted Scalogram | Original Walking Scalogram | Encrypted Scalogram |
---|---|---|---|---|
(H) | 0.9060 | 0.1599 | 0.8753 | 0.0644 |
(V) | 0.9425 | 0.1245 | 0.9448 | 0.0341 |
(D) | 0.8721 | 0.0900 | 0.8140 | 0.0068 |
7.1273 | 7.7068 | 6.7482 | 7.9422 | |
NA | 99.4311% | NA | 99.6735% | |
NA | 99.4362 % | NA | 99.6575% | |
NA | 33.2151 | NA | 33.4512 | |
1.6186 | 10.0731 | 1.6889 | 10.5830 | |
0.8059 | 0.4228 | 0.7866 | 0.3944 | |
0.1067 | 0.0197 | 0.1405 | 0.0162 |
# | Width | Depth | Accuracy |
---|---|---|---|
1 | 20 | 1 | 77.3 |
2 | 50 | 1 | 78.1 |
3 | 100 | 2 | 76.7 |
4 | 50–100 | 2 | 80.0 |
5 | 150–200 | 3 | 88.0 |
6 | 50-100-200 | 3 | 91.1 |
7 | 10–25–50–100 | 4 | 81.3 |
8 | 15–30–60–200 | 4 | 80.7 |
9 | 30–60–120–240 | 5 | 81.5 |
10 | 40–80–240–300 | 5 | 79.9 |
11 | 15–30–45–90–200–400 | 6 | 80.9 |
12 | 50–100–200–400–800 | 6 | 85.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz Shah, S.; Ahmad, J.; Tahir, A.; Ahmed, F.; Russell, G.; Shah, S.Y.; Buchanan, W.J.; Abbasi, Q.H. Privacy-Preserving Non-Wearable Occupancy Monitoring System Exploiting Wi-Fi Imaging for Next-Generation Body Centric Communication. Micromachines 2020, 11, 379. https://doi.org/10.3390/mi11040379
Aziz Shah S, Ahmad J, Tahir A, Ahmed F, Russell G, Shah SY, Buchanan WJ, Abbasi QH. Privacy-Preserving Non-Wearable Occupancy Monitoring System Exploiting Wi-Fi Imaging for Next-Generation Body Centric Communication. Micromachines. 2020; 11(4):379. https://doi.org/10.3390/mi11040379
Chicago/Turabian StyleAziz Shah, Syed, Jawad Ahmad, Ahsen Tahir, Fawad Ahmed, Gordon Russell, Syed Yaseen Shah, William J. Buchanan, and Qammer H. Abbasi. 2020. "Privacy-Preserving Non-Wearable Occupancy Monitoring System Exploiting Wi-Fi Imaging for Next-Generation Body Centric Communication" Micromachines 11, no. 4: 379. https://doi.org/10.3390/mi11040379
APA StyleAziz Shah, S., Ahmad, J., Tahir, A., Ahmed, F., Russell, G., Shah, S. Y., Buchanan, W. J., & Abbasi, Q. H. (2020). Privacy-Preserving Non-Wearable Occupancy Monitoring System Exploiting Wi-Fi Imaging for Next-Generation Body Centric Communication. Micromachines, 11(4), 379. https://doi.org/10.3390/mi11040379