Design and Fabrication of Optical Flow Cell for Multiplex Detection of β-lactamase in Microchannels
Abstract
:1. Introduction
2. Experimental
2.1. Microchip Fabrication
2.2. Fabrication of Flow Cell
2.3. Linear Actuator Design and Fabrication
2.4. Working Principle of the Device
3. Results and Discussions
3.1. Characterisation of Linear Actuator
3.2. Characterisation of the Flow Cell
3.3. β-lactamase Activity in Microchannels
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loeb, S.; Catalona, W.J. Prostate-specific antigen in clinical practice. Cancer Lett. 2007, 249, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Altintas, Z.; Fakanya, W.M.; Tothill, I.E. Cardiovascular disease detection using bio-sensing techniques. Talanta 2014, 128, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cai, F.-F.; Zhong, X.Y. An overview of biomarkers for the ovarian cancer diagnosis. Eur. J. Obstet. Gynecol. Reprod. Boil. 2011, 158, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.-U.; Zhang, X. Microfluidics as an Emerging Platform for Tackling Antimicrobial Resistance (AMR): A Review. Curr. Anal. Chem. 2020, 16, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Banaei, N.; Ren, K. Microfluidics for Combating Antimicrobial Resistance. Trends Biotechnol. 2017, 35, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Gervais, L.; De Rooij, N.; Delamarche, E. Microfluidic Chips for Point-of-Care Immunodiagnostics. Adv. Mater. 2011, 23, H151–H176. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, L.; Weber, S.G. Electrochemical and optical detectors for capillary and chip separations. TrAC Trends Anal. Chem. 2007, 26, 68–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandaveer, W.R.; Pasas-Farmer, S.A.; Fischer, D.J.; Frankenfeld, C.N.; Lunte, S.M. Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis 2004, 25, 3528–3549. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, H. Integrated capillary electrophoresis amperometric detection microchip with replaceable microdisk working electrode. J. Chromatogr. A 2005, 1080, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Pierce, M.C.; Weigum, S.; Jaslove, J.M.; Richards-Kortum, R.; Tkaczyk, T.S. Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost. Ann. Biomed. Eng. 2014, 42, 231–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Xu, D.; Chen, J.; Liu, J.; Li, Y.; Song, J.; Ma, X.; Guo, J. Smartphone-based analytical biosensors. Analyst 2018, 143, 5339–5351. [Google Scholar] [CrossRef] [PubMed]
- Myers, F.B.; Lee, L.P. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 2008, 8, 2015. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.-U.; Nightingale, A.; Niu, X. Optical Flow Cell for Measuring Size, Velocity and Composition of Flowing Droplets. Micromachines 2017, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.-U.; Nightingale, A.; Niu, X. Continuous measurement of enzymatic kinetics in droplet flow for point-of-care monitoring. Analyst 2016, 141, 3266–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynas, L.; Currie, D.; McCaughey, W.J.; McEvoy, J.D.G.; Kennedy, D.G. Contamination of animal feedingstuffs with undeclared antimicrobial additives. Food Addit. Contam. 1998, 15, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Jayalakshmi, K.; Paramasivam, M.; Sasikala, M.; Tamilam, T.V.; Sumithra, A. Review on antibiotic residues in animal products and its impact on environments and human health. J. Entomol. Zool. Stud. 2017, 5, 1446–1451. [Google Scholar]
- Edmondson, P. Avoidance of medicines residues in milk: An update. Practice 2007, 29, 147–150. [Google Scholar] [CrossRef]
- Das, S.; Kumar, N.; Vishweswaraiah, R.; Haldar, L.; Gaare, M.; Singh, V.K.; Puniya, A.K. Microbial based assay for specific detection of β-lactam group of antibiotics in milk. J. Food Sci. Technol. 2014, 51, 1161–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, N.M.; Pivetal, J.; Loo-Zazueta, A.L.; Barros, J.; Edwards, A. Lab on a Stick: Multi-Analyte Cellular Assays in a Microfluidic Dipstick. Lab Chip 2016, 16, 2891–2899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.-u.; Zhang, X. Design and Fabrication of Optical Flow Cell for Multiplex Detection of β-lactamase in Microchannels. Micromachines 2020, 11, 385. https://doi.org/10.3390/mi11040385
Hassan S-u, Zhang X. Design and Fabrication of Optical Flow Cell for Multiplex Detection of β-lactamase in Microchannels. Micromachines. 2020; 11(4):385. https://doi.org/10.3390/mi11040385
Chicago/Turabian StyleHassan, Sammer-ul, and Xunli Zhang. 2020. "Design and Fabrication of Optical Flow Cell for Multiplex Detection of β-lactamase in Microchannels" Micromachines 11, no. 4: 385. https://doi.org/10.3390/mi11040385
APA StyleHassan, S. -u., & Zhang, X. (2020). Design and Fabrication of Optical Flow Cell for Multiplex Detection of β-lactamase in Microchannels. Micromachines, 11(4), 385. https://doi.org/10.3390/mi11040385