Broadband Plasmonic Polarization Filter Based on Photonic Crystal Fiber with Dual-Ring Gold Layer
Abstract
:1. Introduction
2. PCF Filter Model and Theory
3. Results and Analysis
3.1. Dispersion Relations
3.2. Structural Parameter Effects
3.3. Filter Performance
4. Fabrication and Tolerance Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ritchie, R.H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 1, 874–881. [Google Scholar] [CrossRef]
- Lee, H.; Schmidt, M.A.; Tyagi, H.K.; Sempere, L.P.; Russell, P.S.J. Polarization-Dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl. Phys. Lett. 2008, 93, 111102. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Russell, P.S. Long-range spiralling surface plasmon modes on metallic nanowires. Opt. Express 2008, 16, 13617–13623. [Google Scholar] [CrossRef] [PubMed]
- Ditlbacher, H.; Galler, N.; Koller, D.M.; Hohenau, A.; Leitner, A.; Aussenegg, F.R.; Krenn, J.R. Coupling dielectric waveguide modes to surface plasmon polaritons. Opt. Express 2008, 16, 10455–10464. [Google Scholar] [CrossRef]
- Lee, H.W.; Schmidt, M.A.; Russell, R.F.; Joly, N.Y.; Tyagi, H.K.; Uebel, P.; Russell, P.S.J. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt. Express 2011, 19, 12180–12189. [Google Scholar] [CrossRef]
- Russell, P. Photonic Crystal Fibers. J. Lightwave Technol. 2007, 24, 358–362. [Google Scholar]
- Knight, J.S.C. Photonic crystal fibers and fiber lasers (Invited). J. Opt. Soc. Am. B-Opt. Phys. 2007, 24, 1661–1668. [Google Scholar] [CrossRef]
- Jocher, C.; Jauregui, C.; Voigtlander, C.; Stutzki, F.; Nolte, S.; Limpert, J.; Tünnermann, A. Fiber based polarization filter for radially and azimuthally polarized light. Opt. Express 2011, 19, 19582–19590. [Google Scholar] [CrossRef]
- Xue, J.; Li, S.; Xiao, Y.; Qin, W.; Xin, X.; Zhu, X. Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Opt. Express 2013, 21, 13733–13740. [Google Scholar] [CrossRef]
- An, G.; Li, S.; Zhang, W.; Fan, Z.; Bao, Y. A polarization filter of gold-filled photonic crystal fiber with regular triangular and rectangular lattices. Opt. Commun. 2014, 331, 316–319. [Google Scholar] [CrossRef]
- Hameed, M.F.; Heikal, A.M.; Younis, B.M.; Abdelrazzak, M.M.; Obayya, S.S. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter. Opt. Express 2015, 23, 7007–7020. [Google Scholar] [CrossRef] [PubMed]
- Heikal, A.M.; Hussain, F.F.K.; Hameed, M.F.O.; Obayya, S.S.A. Efficient Polarization Filter Design Based on Plasmonic Photonic Crystal Fiber. J. Lightwave Technol. 2015, 33, 2868–2875. [Google Scholar] [CrossRef]
- Liu, Q.; Li, S.; Li, J.; Dou, C.; Wang, X.; Wang, G.; Shi, M. Tunable Fiber Polarization Filter by Filling Different Index Liquids and Gold Wire into Photonic Crystal Fiber. J. Lightwave Technol. 2016, 34, 2484–2490. [Google Scholar] [CrossRef]
- Chen, H.; Li, S.; Ma, M.; Liu, Y.; Shi, M.; Liu, Q.; Cheng, T. Filtering Characteristics and Applications of Photonic Crystal Fibers Being Selectively Infiltrated with One Aluminum Rod. J. Lightwave Technol. 2016, 34, 4972–4980. [Google Scholar] [CrossRef]
- An, G.; Li, S.; Yan, X.; Yuan, Z.; Zhang, X. High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance. Appl. Opt. 2016, 55, 1262–1266. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, S.; Liu, Q.; Wang, X. Design of a novel photonic crystal fiber filter based on gold-coated and elliptical air holes. Opt. Mater. 2017, 73, 638–641. [Google Scholar] [CrossRef]
- Dou, C.; Jing, X.; Li, S.; Wu, J.; Wang, Q. Low-loss polarization filter at 1.55 μm based on photonic crystal fiber. Optik 2018, 162, 214–219. [Google Scholar] [CrossRef]
- Almewafy, B.H.; Areed, N.F.F.; Hameed, M.F.O.; Obayya, S.S.A. Modified D-shaped SPR PCF polarization filter at telecommunication wavelengths. Opt. Quantum Electron. 2019, 5, 193. [Google Scholar] [CrossRef]
- Saitoh, K.; Koshiba, M.; Hasegawa, T.; Sasaoka, E. Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Opt. Express 2003, 11, 843–852. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, X.; Zhang, Y.; Shum, P.; Zhang, Y.; Xia, L. Theoretical Study of Dual-Core Photonic Crystal Fibers with Metal Wire. IEEE Photonics J. 2012, 4, 1178–1187. [Google Scholar] [CrossRef]
- Saghaei, H.; Heidari, V.; Ebnali-Heidari, M.; Yazdani, M.R. A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik 2016, 127, 11938–11947. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, X.; Nie, F.; Lu, X.; Chang, M. Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure. J. Mod. Opt. 2018, 65, 1459–1465. [Google Scholar] [CrossRef]
- Cai, W.; Liu, E.; Feng, B. Dodecagonal photonic quasi-crystal fiber with high birefringence. J. Opt. Soc. Am. A Opt. Image Sci. Vision 2016, 33, 2108–2114. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, L.; Lu, X.; Liu, Q.; Wang, F.; Lv, J.; Sun, T.; Mu, H.; Chu, P.K. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 2017, 25, 14227–14237. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhao, J. Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers. Opt. Express 2013, 21, 5232–5238. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Chang, M.; Lu, X.; Zhou, J.; Zhang, X. Photonic Crystal Fiber Plasmonic Sensor Based on Dual Optofluidic Channel. Sensors 2019, 19, 5150. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lu, Y.; Liu, B.; Yao, J. Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance. Plasmonics 2017, 12, 489–496. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Liu, B.; Yao, J. Polarization Characteristics of High-Birefringence Photonic Crystal Fiber Selectively Coated with Silver Layers. Plasmonics 2018, 13, 1035–1042. [Google Scholar] [CrossRef]
- Sun, B.; Chen, M.Y.; Zhou, J.; Zhang, Y.K. Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire. Plasmonics 2013, 8, 1253–1258. [Google Scholar] [CrossRef]
- Nagasaki, A.; Saitoh, K.; Koshiba, M. Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt. Express 2011, 19, 3799–3808. [Google Scholar] [CrossRef]
- Chen, N.; Chang, M.; Zhang, X.; Zhou, J.; Lu, X.; Zhuang, S. Highly Sensitive Plasmonic Sensor Based on a Dual-Side Polished Photonic Crystal Fiber for Component Content Sensing Applications. Nanomaterials 2019, 9, 1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Li, S.; Li, H.; Zi, J.; Zhang, W.; Fan, Z.; An, G.; Bao, Y. Broadband Single-Polarization Photonic Crystal Fiber Based on Surface Plasmon Resonance for Polarization Filter. Plasmonics 2015, 10, 931–939. [Google Scholar] [CrossRef]
- Chen, H.; Li, S.; Ma, M.; Li, J.; Fan, Z.; Shi, M. Surface Plasmon Induced Polarization Filter Based on Au Wires and Liquid Crystal Infiltrated Photonic Crystal Fibers. Plasmonics 2016, 11, 459–464. [Google Scholar] [CrossRef]
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef]
- Jiang, L.H.; Y. Zheng, J.; Yang, J.; Hou, L.T.; Li, Z.H.; Zhao, X.T. An Ultra-broadband Single Polarization Filter Based on Plasmonic Photonic Crystal Fiber with a Liquid Crystal Core. Plasmonics 2017, 12, 411–417. [Google Scholar] [CrossRef]
- Chiang, J.; Sun, N.; Lin, S.; Liu, W. Analysis of an Ultrashort PCF-Based Polarization Splitter. J. Lightwave Technol. 2010, 28, 707–713. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Cox, F.M.; Kuhlmey, B.T.; Large, M.C.J. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 2007, 15, 16270–16278. [Google Scholar] [CrossRef]
- Liu, Q.; Li, S.; Chen, H. Two Kinds of Polarization Filter Based on Photonic Crystal Fiber with Nanoscale Gold Film. IEEE Photonics J. 2015, 7, 1–11. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Li, S.; Liu, Q. Broadband core shift photonic crystal fiber polarization filter at 1.55 μm based on surface plasmon resonance. Optik 2018, 165, 218–225. [Google Scholar] [CrossRef]
- Yan, X.; Gao, Y.; Cheng, T.; Li, S. High-loss and broadband photonic crystal fiber polarization filter with two large apertures coated with gold layers. J. Opt. Soc. Am. B-Opt. Phys. 2019, 36, 3085–3089. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Wang, F.; Xu, C.; Liu, Q.; Liu, W.; Yang, L.; Li, X.; Sun, T.; Chu, P.K. Tunable single-polarization bimetal-coated and liquid-filled photonic crystal fiber filter based on surface plasmon resonance. Appl. Opt. 2019, 58, 6308–6314. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Y.; Wu, Z.; Zhang, G.; Zhang, Y.; Jiang, L. A Broadband Single Polarization Photonic Crystal Fiber Filter around 1.55 μm Based on Gold-Coated and Pentagonal Structure. Plasmonics, 2020. [Google Scholar] [CrossRef]
- Chillcce, E.F.; Cordeiro, C.M.; Barbosa, L.C.; Barbosa, L.C.; Cruz, C.H.B. Tellurite photonic crystal fiber made by a stack-and-draw technique. J. Non-Cryst. Solids 2006, 352, 3423–3428. [Google Scholar] [CrossRef]
- Sazio, P.J.; Amezcuacorrea, A.; Finlayson, C.E.; Hayes, J.R.; Scheidemantel, T.J.; Baril, N.F.; Jackson, B.R.; Won, D.J.; Zhang, F.; Margine, E.R. Microstructured optical fibers as high-pressure microfluidic reactors. Science 2006, 311, 1583–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azman, M.F.; Mahdiraji, G.A.; Wong, W.R.; Aoni, R.A.; Adikan, F.R.M. Design and fabrication of copper-filled photonic crystal fiber based polarization filters. Appl. Opt. 2019, 58, 2068–2075. [Google Scholar] [CrossRef]
(THz) | (THz) | (THz) | (THz) | ||
---|---|---|---|---|---|
5.9673 | 1.09 | 2113.6 | 15.92 | 650.07 | 104.86 |
References | Max. Extinction Ratio (dB) | Insertion Loss (dB) | Bandwidth (nm) | Length (mm) |
---|---|---|---|---|
[16] | −160 | N/A | 500 | 0.1 |
[17] | −200.8 | 0.07(1.55μm) | 780 | 2 |
[18] | −23.2 | N/A | 45 (1.3 μm) 100 (1.52 μm) | 0.023 |
[29] | −181 | N/A | 430 | 3 |
[38] | −66.6 | N/A | >420 | 0.3 |
[39] | ~−255 | N/A | 100 | 0.2 |
[40] | 231 | N/A | 224 (1.31 μm) 504 (1.56 μm) | 1 |
[41] | −103 | N/A | 500 | 0.8 |
[42] | ~−102 | N/A | 1010 | 0.2 |
This paper | −478 | 0.11(1.31μm) 0.04(1.55μm) | 750 | 2 |
Structural Parameters Variation | Loss Variation (α-α0)/α | Res. Wav. Variation |λ-λ0|(nm) |
---|---|---|
+3% of d1 | 2.3% | 2 |
−3% of d1 | −3.1% | 2 |
+3% of Λ | 4.3% | 5 |
−3% of Λ | −5.2% | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, N.; Zhang, X.; Chang, M.; Lu, X.; Zhou, J. Broadband Plasmonic Polarization Filter Based on Photonic Crystal Fiber with Dual-Ring Gold Layer. Micromachines 2020, 11, 470. https://doi.org/10.3390/mi11050470
Chen N, Zhang X, Chang M, Lu X, Zhou J. Broadband Plasmonic Polarization Filter Based on Photonic Crystal Fiber with Dual-Ring Gold Layer. Micromachines. 2020; 11(5):470. https://doi.org/10.3390/mi11050470
Chicago/Turabian StyleChen, Nan, Xuedian Zhang, Min Chang, Xinglian Lu, and Jun Zhou. 2020. "Broadband Plasmonic Polarization Filter Based on Photonic Crystal Fiber with Dual-Ring Gold Layer" Micromachines 11, no. 5: 470. https://doi.org/10.3390/mi11050470
APA StyleChen, N., Zhang, X., Chang, M., Lu, X., & Zhou, J. (2020). Broadband Plasmonic Polarization Filter Based on Photonic Crystal Fiber with Dual-Ring Gold Layer. Micromachines, 11(5), 470. https://doi.org/10.3390/mi11050470