Advances in the Development of Innovative Sensor Platforms for Field Analysis
Abstract
:1. Introduction
2. Particulate Matter
3. Microplastics
4. Heavy Metals
5. Combustion Products and Hazardous Gases
6. Pesticides/Biocides
7. Noise
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elkins, P.; Gupta, J.; Boileau, P. Global Environment Outlook: GEO-6: Healthy Planet, Healthy People; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Landrigan, P.J.; Belpoggi, F. The need for independent research on the health effects of glyphosate-based herbicides. Environ. Health 2018, 17, 4. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ahmad, M. Assessment of cytotoxic and genotoxic potential of refinery waste effluent using plant, animal and bacterial systems. J. Hazard. Mater. 2012, 201, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.M.; Grigg, J. Diesel, children and respiratory disease. BMJ Paediatr. Open 2018, 2, e000210. [Google Scholar] [CrossRef] [PubMed]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Westervelt, D.M.; Pierce, J.R.; Adams, P.J. Analysis of feedbacks between nucleation rate, survival probability and cloud condensation nuclei formation. Atmos. Chem. Phys. 2014, 14, 5577–5597. [Google Scholar] [CrossRef] [Green Version]
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhang, Y.; Martin, S.T. Complex refractive indices of thin films of secondary organic materials by spectroscopic ellipsometry from 220 to 1200 nm. Environ. Sci. Technol. 2013, 47, 13594–13601. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, W.; Cui, Y.; Xiong, X. Multiple-scattering effects of atmosphere aerosols on light-transmission measurements. Opt. Rev. 2017, 24, 590–599. [Google Scholar] [CrossRef]
- Sullivan, B.; Allawatt, G.; Emery, A.; Means, P.; Kramlich, J.; Posner, J. Time-resolved particulate emissions monitoring of cookstove biomass combustion using a tapered element oscillating microbalance. Combust. Sci. Technol. 2017, 189, 923–936. [Google Scholar] [CrossRef]
- Schrobenhauser, R.; Strzoda, R.; Hartmann, A.; Fleischer, M.; Amann, M.C. Miniaturized sensor for particles in air using Fresnel ring lenses and an enhanced intensity ratio technique. Appl. Opt. 2014, 53, 625–633. [Google Scholar] [CrossRef]
- Dong, M.Z.; Iervolino, E.; Santagata, F.; Zhang, G.Y.; Zhang, G.Q. Silicon microfabrication based particulate matter sensor. Sens. Actuator A-Phys. 2016, 247, 115–124. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.S.; Chen, D.Y.; Liu, X.X.; Wu, C.J.; Xi, J. A Miniature System for Separation and Detection of PM Based on 3-D Printed Virtual Impactor and QCM Sensor. IEEE Sens. J. 2018, 18, 6130–6137. [Google Scholar] [CrossRef]
- Chiriaco, M.S.; Rizzato, S.; Primiceri, E.; Spagnolo, S.; Monteduro, A.G.; Ferrara, F.; Maruccio, G. Optimization of SAW and EIS sensors suitable for environmental particulate monitoring. Microelectron. Eng. 2018, 202, 31–36. [Google Scholar] [CrossRef]
- Thomas, S.; Cole, M.; Villa-Lopez, F.H.; Gardner, J.W. High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sens. Actuator A-Phys. 2016, 244, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Loder, M.G.J.; Gerdts, G. Methodology Used for the Detection and Identification of Microplastics-A Critical Appraisal; Springer: Berlin, Germany, 2015; 8p. [Google Scholar]
- Shim, W.J.; Hong, S.H.; Eo, S.E. Identification methods in microplastic analysis: A review. Anal. Methods 2017, 9, 1384–1391. [Google Scholar] [CrossRef]
- Zarfl, C. Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Anal. Bioanal. Chem. 2019, 411, 3743–3756. [Google Scholar] [CrossRef] [PubMed]
- Huppertsberg, S.; Knepper, T.P. Instrumental analysis of microplastics-benefits and challenges. Anal. Bioanal. Chem. 2018, 410, 6343–6352. [Google Scholar] [CrossRef]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef]
- Maes, T.; Jessop, R.; Wellner, N.; Haupt, K.; Mayes, A.G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci. Rep. 2017, 7, 44501. [Google Scholar] [CrossRef] [Green Version]
- Asamoah, B.O.; Kanyathare, B.; Roussey, M.; Peiponen, K.E. A prototype of a portable optical sensor for the detection of transparent and translucent microplastics in freshwater. Chemosphere 2019, 231, 161–167. [Google Scholar] [CrossRef]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Raskin, I.; Kumar, P.B.A.N.; Dushenkov, S.; Salt, D.E. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol. 1994, 5, 285–290. [Google Scholar] [CrossRef]
- Beyersmann, D.; Hartwig, A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol. 2008, 82, 493–512. [Google Scholar] [CrossRef] [PubMed]
- Copeland, T.R.; Skogerbo, R.K. Anodic-Stripping Voltammetry. Anal. Chem. 1974, 46, 1257A–1268a. [Google Scholar] [CrossRef]
- Dai, X.; Compton, R.G. Gold nanoparticle modified electrodes show a reduced interference by Cu(II) in the detection of As(III) using anodic stripping voltammetry. Electroanalysis 2005, 17, 1325–1330. [Google Scholar] [CrossRef]
- Abollino, O.; Giacomino, A.; Malandrino, M.; Piscionieri, G.; Mentasti, E. Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode. Electroanalysis 2008, 20, 75–83. [Google Scholar] [CrossRef]
- Musameh, M.M.; Hickey, M.; Kyratzis, I.L. Carbon nanotube-based extraction and electrochemical detection of heavy metals. Res. Chem. Intermed. 2011, 37, 675–689. [Google Scholar] [CrossRef]
- Morton, J.; Havens, N.; Mugweru, A.; Wanekaya, A.K. Detection of Trace Heavy Metal Ions Using Carbon Nanotube-Modified Electrodes. Electroanalysis 2009, 21, 1597–1603. [Google Scholar] [CrossRef]
- Xie, R.; Zhou, L.; Lan, C.; Fan, F.; Xie, R.; Tan, H.; Xie, T.; Zhao, L. Nanostructured carbon black for simultaneous electrochemical determination of trace lead and cadmium by differential pulse stripping voltammetry. R. Soc. Open Sci. 2018, 5, 180282. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.D.; Lin, Y.H.; Tu, Y.; Ren, Z.F. Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. Analyst 2005, 130, 1098–1101. [Google Scholar] [CrossRef]
- Zou, Z.W.; Jang, A.; MacKnight, E.T.; Wu, P.M.; Do, J.; Shim, J.S.; Bishop, P.L.; Ahn, C.H. An On-Site Heavy Metal Analyzer With Polymer Lab-on-a-Chips for Continuous Sampling and Monitoring. IEEE Sens. J. 2009, 9, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.B.; Zhou, G.H.; Christensen, E.R.; Heideman, R.; Chen, J.H. Graphene-based sensors for detection of heavy metals in water: A review. Anal. Bioanal. Chem. 2014, 406, 3957–3975. [Google Scholar] [CrossRef] [PubMed]
- Luo, L. Synthesis of Semiconductor Micro/Nanowires and Their Applications in Devices; City University of Hong Kong: Hong Kong, China, 2009. [Google Scholar]
- Kim, T.H.; Lee, J.; Hong, S. Highly Selective Environmental Nanosensors Based on Anomalous Response of Carbon Nanotube Conductance to Mercury Ions. J. Phys. Chem. C 2009, 113, 19393–19396. [Google Scholar] [CrossRef]
- Chen, K.H.; Lu, G.H.; Chang, J.B.; Mao, S.; Yu, K.H.; Cui, S.M.; Chen, J.H. Hg(II) Ion Detection Using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles. Anal. Chem. 2012, 84, 4057–4062. [Google Scholar] [CrossRef]
- Sudibya, H.G.; He, Q.Y.; Zhang, H.; Chen, P. Electrical Detection of Metal Ions Using Field-Effect Transistors Based on Micropatterned Reduced Graphene Oxide Films. ACS Nano 2011, 5, 1990–1994. [Google Scholar] [CrossRef]
- Lee, J.S.; Han, M.S.; Mirkin, C.A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093–4096. [Google Scholar] [CrossRef]
- Li, T.; Wang, E.; Dong, S. Lead(II)-Induced Allosteric G-Quadruplex DNAzyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+ Detection. Anal. Chem. 2010, 82, 1515–1520. [Google Scholar] [CrossRef]
- Cai, S.; Lao, K.M.; Lau, C.W.; Lu, J.Z. “Turn-On” Chemiluminescence Sensor for the Highly Selective and Ultrasensitive Detection of Hg2+ Ions Based on Interstrand Cooperative Coordination and Catalytic Formation of Gold Nanoparticles. Anal. Chem. 2011, 83, 9702–9708. [Google Scholar] [CrossRef]
- Paramanik, B.; Bhattacharyya, S.; Patra, A. Detection of Hg2+ and F- Ions by Using Fluorescence Switching of Quantum Dots in an Au-Cluster-CdTe QD Nanocomposite. Chem.-Eur. J. 2013, 19, 5980–5987. [Google Scholar] [CrossRef]
- Hung, Y.L.; Hsiung, T.M.; Chen, Y.Y.; Huang, Y.F.; Huang, C.C. Colorimetric Detection of Heavy Metal Ions Using Label-Free Gold Nanoparticles and Alkanethiols. J. Phys. Chem. C 2010, 114, 16329–16334. [Google Scholar] [CrossRef]
- Li, M.; Zhou, X.J.; Guo, S.W.; Wu, N.Q. Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 2013, 43, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.; Finder, T.; Willner, I. Multiplexed Analysis of Hg2+ and Ag+ Ions by Nucleic Acid Functionalized CdSe/ZnS Quantum Dots and Their Use for Logic Gate Operations. Angew. Chem. Int. Ed. 2009, 48, 7818–7821. [Google Scholar] [CrossRef] [PubMed]
- He, X.R.; Liu, H.B.; Li, Y.L.; Wang, S.; Li, Y.J.; Wang, N.; Xiao, J.C.; Xu, X.H.; Zhu, D.B. Gold nanoparticle-based fluorometric and colorimetric sensing of copper(II) ions. Adv. Mater. 2005, 17, 2811–2815. [Google Scholar] [CrossRef]
- Chung, E.; Gao, R.; Ko, J.; Choi, N.; Lim, D.W.; Lee, E.K.; Chang, S.I.; Choo, J. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel. Lab Chip 2013, 13, 260–266. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J. Am. Chem. Soc. 2005, 127, 12677–12683. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Panwar, N.; Yap, S.H.K.; Wu, Q.; Zeng, S.W.; Xu, J.H.; Tjin, S.C.; Song, J.; Qu, J.L.; Yong, K.T. SERS-based ultrasensitive sensing platform: An insight into design and practical applications. Coord. Chem. Rev. 2017, 337, 1–33. [Google Scholar] [CrossRef]
- Bao, L.L.; Mahurin, S.M.; Haire, R.G.; Dai, S. Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions. Anal. Chem. 2003, 75, 6614–6620. [Google Scholar] [CrossRef]
- Feilchenfeld, H.; Siiman, O. Surface Raman Excitation And Enhancement Profiles For Chromate, Molybdate, And Tungstate On Colloidal Silver. J. Phys. Chem. 1986, 90, 2163–2168. [Google Scholar] [CrossRef]
- Li, J.L.; Chen, L.X.; Lou, T.T.; Wang, Y.Q. Highly Sensitive SERS Detection of As3+ Ions in Aqueous Media using Glutathione Functionalized Silver Nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 3936–3941. [Google Scholar] [CrossRef]
- Ma, W.; Sun, M.Z.; Xu, L.G.; Wang, L.B.; Kuang, H.; Xu, C.L. A SERS active gold nanostar dimer for mercury ion detection. Chem. Commun. 2013, 49, 4989–4991. [Google Scholar] [CrossRef]
- Wang, M.; Jing, N.; Chou, I.H.; Cote, G.L.; Kameoka, J. An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 2007, 7, 630–632. [Google Scholar] [CrossRef] [PubMed]
- Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 2011, 160, 580–591. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushik, A.; Kumar, R.; Arya, S.K.; Nair, M.; Malhotra, B.D.; Bhansali, S. Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 2015, 115, 4571–4606. [Google Scholar] [CrossRef]
- Misra, S.C.K.; Mathur, P.; Srivastava, B.K. Vacuum-deposited nanocrystalline polyaniline thin film sensors for detection of carbon monoxide. Sens. Actuator A-Phys. 2004, 114, 30–35. [Google Scholar] [CrossRef]
- Crawford, J.; Faroon, O.; Llados, F.; Wilson, J.D. Toxicological Profile for Phenol; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2008.
- Dawson, A.H.; Eddleston, M.; Senarathna, L.; Mohamed, F.; Gawarammana, I.; Bowe, S.J.; Manuweera, G.; Buckley, N.A. Acute Human Lethal Toxicity of Agricultural Pesticides: A Prospective Cohort Study. PLoS Med. 2010, 7, e1000357. [Google Scholar] [CrossRef] [Green Version]
- Tsatsakis, A.M.; Manousakis, A.; Anastasaki, M.; Tzatzarakis, M.; Katsanoulas, K.; Delaki, C.; Agouridakis, P. Clinical and toxicological data in fenthion and omethoate acute poisoning. J. Environ. Sci. Health Part B Pestic. Contam. Agric. Wastes 1998, 33, 657–670. [Google Scholar] [CrossRef]
- Meng, X.W.; Wei, J.F.; Ren, X.L.; Ren, J.; Tang, F.Q. A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens. Bioelectron. 2013, 47, 402–407. [Google Scholar] [CrossRef]
- Suwansa-Ard, S.; Kanatharana, P.; Asawatreratanakul, P.; Limsakul, C.; Wongkittisuksa, B.; Thavarungkul, P. Semi disposable reactor biosensors for detecting carbamate pesticides in water. Biosens. Bioelectron. 2005, 21, 445–454. [Google Scholar] [CrossRef]
- Guo, Y.M.; Sun, X.X.; Liu, X.F.; Sun, X.; Zhao, G.; Chen, D.F.; Wang, X.Y. A Miniaturized Portable Instrument for Rapid Determination Pesticides Residues in Vegetables and Fruits. IEEE Sens. J. 2015, 15, 4046–4052. [Google Scholar] [CrossRef]
- Funari, R.; Della Ventura, B.; Schiavo, L.; Esposito, R.; Altucci, C.; Velotta, R. Detection of Parathion Pesticide by Quartz Crystal Microbalance Functionalized with UV-Activated Antibodies. Anal. Chem. 2013, 85, 6392–6397. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.L.; Yin, R.; Jensen, J.L. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water. Analyst 2001, 126, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, Y.; Zhang, T.Y.; Chang, Y.Y.; Wang, S.J.; Zou, R.B.; Zhu, G.N.; Shen, L.R.; Guo, Y.R. Quantum Dots-Based Immunochromatographic Strip for Rapid and Sensitive Detection of Acetamiprid in Agricultural Products. Front. Chem. 2019, 7, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.J.; Wan, Y.; Ali, A.; Deng, S.Y.; Su, Y.; Fan, C.H.; Yang, S.L. Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci. China Chem. 2016, 59, 237–242. [Google Scholar] [CrossRef]
- Bala, R.; Dhingra, S.; Kumar, M.; Bansal, K.; Mittal, S.; Sharma, R.K.; Wangoo, N. Detection of organophosphorus pesticide—Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem. Eng. J. 2017, 311, 111–116. [Google Scholar] [CrossRef]
- Fei, A.R.; Liu, Q.; Huan, J.; Qian, J.; Dong, X.Y.; Qiu, B.J.; Mao, H.P.; Wang, K. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens. Bioelectron. 2015, 70, 122–129. [Google Scholar] [CrossRef]
- Mei, Q.S.; Jing, H.R.; Li, Y.; Yisibashaer, W.; Chen, J.; Li, B.N.; Zhang, Y. Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens. Bioelectron. 2016, 75, 427–432. [Google Scholar] [CrossRef]
- Ma, Y.D.; Wang, Y.H.; Luo, Y.; Duan, H.Z.; Li, D.; Xu, H.; Fodjo, E.K. Rapid and sensitive on-site detection of pesticide residues in fruits and vegetables using screen-printed paper-based SERS swabs. Anal. Methods 2018, 10, 4655–4664. [Google Scholar] [CrossRef]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Babisch, W. Cardiovascular effects of noise. Noise Health 2011, 13, 201–204. [Google Scholar] [CrossRef]
- World Health Organization. Environmental Noise Guidelines for the European Region; World Health Organization: Copenhagen, Denmark, 2018. [Google Scholar]
- Rossing, T. Springer Handbook of Acoustics; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Ilić, P.; Stojanović-Bjelić, L.; Janjuš, Z. Noise Pollution near Health Institutions. Qual. Life 2018, 16. [Google Scholar] [CrossRef]
- Nast, D.R.; Speer, W.S.; Le Prell, C.G. Sound level measurements using smartphone “apps”: Useful or inaccurate? Noise Health 2014, 16, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Zamora, W.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Accurate Ambient Noise Assessment Using Smartphones. Sensors 2017, 17, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risojevic, V.; Rozman, R.; Pilipovic, R.; Cesnovar, R.; Bulic, P. Accurate Indoor Sound Level Measurement on A Low-Power and Low-Cost Wireless Sensor Node. Sensors 2018, 18, 2351. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Qin, H.; Song, X.; Wang, M.; Qiu, H.; Zhou, Z. Wireless Sensor Networks for Noise Measurement and Acoustic Event Recognitions in Urban Environments. Sensors 2020, 20, 2093. [Google Scholar] [CrossRef] [Green Version]
- Kershaw, P. Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment; International Maritime Organization: London, Uk, 2017. [Google Scholar]
- Shim, W.J.; Hong, S.H.; Eo, S. Marine microplastics: Abundance, distribution, and composition. In Microplastic Contamination in Aquatic Environments; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–26. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: First Addendum to the Fourth Edition; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. Evolution of WHO Air Quality Guidelines: Past, Present and Future; WHO Regional Office for Europe: Copenhagen, Denmark, 2017. [Google Scholar]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Sugisaka, M. Working robots for nuclear power plant desasters. In Proceedings of the 5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011), Daejeon, Korea, 31 May–3 June 2011; pp. 358–361. [Google Scholar]
- Muscato, G.; Caltabiano, D.; Guccione, S.; Longo, D.; Coltelli, M.; Cristaldi, A.; Pecora, E.; Sacco, V.; Sim, P.; Virk, G.S.; et al. ROBOVOLC: A robot for volcano exploration result of first test campaign. Ind. Robot 2003, 30, 231–242. [Google Scholar] [CrossRef]
- Roman, C.N. Self Consistent Bathymetric Mapping from Robotic Vehicles in the Deep Ocean; Massachusetts Institute of Technology: Cambridge, MA, USA, 2005. [Google Scholar]
- Vasilijevic, A.; Nad, D.; Mandic, F.; Miskovic, N.; Vukic, Z. Coordinated Navigation of Surface and Underwater Marine Robotic Vehicles for Ocean Sampling and Environmental Monitoring. IEEE-ASME Trans. Mechatron. 2017, 22, 1174–1184. [Google Scholar] [CrossRef]
- Hu, J.W.; Xu, J.; Xie, L.H. Cooperative Search and Exploration in Robotic Networks. Unmanned Syst. 2013, 1, 121–142. [Google Scholar] [CrossRef]
- Amato, G.; Broxvall, M.; Chessa, S.; Dragone, M.; Gennaro, C.; Vairo, C. When wireless sensor networks meet robots. In Proceedings of the ICSNC 2012: The Seventh International Conference on Systems and Networks Communications, Lisbon, Portugal, 18–23 November 2012; pp. 35–40. [Google Scholar]
- Witt, J.; Dunbabin, M. Go with the flow: Optimal AUV path planning in coastal environments. In Proceedings of the Australian Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar]
- Smith, R.N.; Pereira, A.; Chao, Y.; Li, P.P.; Caron, D.A.; Jones, B.H.; Sukhatme, G.S. Autonomous underwater vehicle trajectory design coupled with predictive ocean models: A case study. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 4770–4777. [Google Scholar]
- Techy, L.; Schmale III, D.G.; Woolsey, C.A. Coordinated aerobiological sampling of a plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles. J. Field Robot. 2010, 27, 335–343. [Google Scholar] [CrossRef]
- Hombal, V.; Sanderson, A.; Blidberg, D.R. Multiscale adaptive sampling in environmental robotics. In Proceedings of the 2010 IEEE Conference on Multisensor Fusion and Integration, Salt Lake City, UT, USA, 5–7 September 2010; pp. 80–87. [Google Scholar]
- Nayyar, A.; Puri, V.; Le, D.-N. Internet of nano things (IoNT): Next evolutionary step in nanotechnology. Nanosci. Nanotechnol. 2017, 7, 4–8. [Google Scholar]
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. A Review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT); IEEE: New York, NY, USA, 2015; pp. 219–224. [Google Scholar]
Pollutant | Guideline Value | Health Effects | Sources | Limit of Detection |
---|---|---|---|---|
PARTICULATE MATTER (PM) [5] | PM2.5: 25 µg/m3 (1 d). PM10: 50 µg/m3 (1 d). | Acute lower respiratory infections, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. | Mainly in developing cities, in particular in South East Asia and countries in Western Pacific Ocean. | PM with 0.3 um minimum dimension: 1 µg/m3 [light-scattering photometry]. |
MICROPLASTICS [82,83] polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PUR), polyethylene terephthalate (PET) | Not yet established | Irritation on eyes, respiratory tract symptoms, liver and gastrointestinal effects, neurobehavioral and immunological changes in children, miscarriage, damage to immune system, endocrine disruption, decreased comprehension. | Bags, storage containers, bottles, gear, strapping, cool boxes, floats, cups, utensils, film, pipe, fishing nets, rope, boats, cigarette filters. | Not yet established |
HEAVY METALS[84,85] Sb, As, Cd, Cu, Pb, Se, Ag, U, Hg, Fe, Cr, Zn | Sb: 0.02 mg/L; As: 0.01 mg/L; Cd: 3 µg/L; Cu: 2 mg/L; Cr: 0.05 mg/L; PDMI of Fe: 0.8 mg/kg; Pb: 0.01 µg/L; Hg: 6 µg/L; Ni: 0.07 mg/L; U: 0.03 mg/L. | Hyper-pigmentation, hypo-pigmentation, neuropathy, skin and lung cancer, gastrointestinal disturbances, hypertension, impaired fertility, tubular necrosis, proteinuria, hypoalbuminaemia, gastritis haemorragic, argyria, nephritis. | Corrosion of pipes and steel during water distribution, lubricant agents in petrol, lead-acid batteries, steel industries and alloys industries, fertilizers, granites, and nuclear power stations. | Sb: 0.01 µg/L [AAS]; Cr: 0.05 µg/L [AAS]; Pb: 1 µg/L [AAS]; Hg: 0.05 µg/L [AAS]; Se: 0.5 µg/L [AAS]; As: 0.1 mg/L [ICP-MS]; Cd: 0.01 µg/L [ICP-MS]; Cu: 0.02 µg/L [ICP-MS]; Ni: 0.1 µg/L [ICP-MS]; U: 0.01 µg/L [ICP-MS]. |
COMBUSTION-PRODUCTS [86] O3, NO2, SO2 | O3: 100 µg/m3 (8-h) NO2: 40 µg/m3 (1-y) SO2: 20 µg/m3 (1-d) | Inflammation of airways, asthma, chronic obstructive pulmonary disease, reduced lung function, proclivity to infection of the respiratory tract. | Photochemical smog, reaction between NOx and VOCs from vehicles, solvents and industry, burning of fossils fuels, smelting of mineral ores. | SO2: 0.1 ppm [EC]; O3: 0.01 ppm [EC]; NO2: 0.1 ppm [EC]. |
HAZARDOUS GASES/HYDROCARBONS [85] Acrylamide, brominated acetic acid, Carbon tetrachloride, Chloral hydrate, Chloramines, 2,4,6-Trichlorophenol, Dialkyltins, 1,2-Dibromoethane, Dichloroacetic acid, 1,2-Dichloroethane, 1,2-Dichloroethene, Dichloromethane, 1,2-Dichloropropene, Di(2-ethylhexyl)phthalate, 1,4-Dioxane, Edetic acid, Epichlorohydrin, Formaldehyde, MTBE, PAHs, Styrene, Tetrachloroethene, Vinyl chloride. | Acrylamide: 0.5 µg/L; Carbon tetrachloride: 4 µg/L; Chloramines: 3 mg/L; 1,2-Dibromoethane: 0.4 µg/L; Dichloroacetic acid: 50 µg/L; 1,2-Dichloroethane: 30µg/L; 1,2-Dichloroethene: 50 µg/L; Dichloromethane: 20 µg/L; 1,2-Dichloropropene: 20 µg/L; Di(2-ethylhexyl)phthalate: 8 µg/L; 1,4-Dioxane: 50 µg/L; Edetic acid: 0.6 mg/L; PAHs: 0.7 µg/L; Styrene: 20 µg/L; Tetrachloroethene: 20 µg/L; Vinyl chloride: 0.3 µg/L. | Neurotoxicity, affection of germ cells, impairment of reproductive functions, scrotal, thyroid, and adrenal tumors, oral toxicity, hepatomas, hepatocellular carcinomas, mononuclear cell leukaemia, forestomach tumor, nasal cavity tumor, increase of serum glutamate-pyruvate transaminase level, central nervous system depression, angiosarcoma, liver cancer. | Treatment of drinking water, production of plastics, resins and other organic chemicals, civil use and industrial materials treatment. | Acrylamide: 32 ng/L [GC]; Carbon tetrachloride: 0.1 µg/L [GC-ECD/MS]; Chloramines: 10 µg/L [Col]; Dialkyltins: 0.01 µg/L [GC-MS]; 1,2- 1,2-Dichloroethane: 0.1 µg/L [GC-ECD]; 1,2-Dichloroethene: 0.17 µg/L [GC-MS]; Dichloromethane: 0.3 µg/L [GC-MS]; 1,2-Dichloropropene: 0.2 µg/L [GC-ECD]; Di(2-ethylhexyl) phthalate: 0.1 µg/L [GC-MS]; 1,4-Dioxane: 0.1 µg/L [GC-MS]; Edetic acid: 1 µg/L [potenziometric stripping]; Epichlorohydrin: 0.01 µg/L [GC-ECD]; PAHs: 10 ng/L [GC-MS]; Styrene: 0.3 µg/L [GC/PID-MS]; Tetrachloroethene: 0.2 µg/L [GC-ECD]; Vinyl chloride: 10 ng/L [GC-ECD]. |
PESTICIDES [84] alachlor, aldicarb, aldrin, dieldrin, atrazine, bentazone, carbaryl, carbofuran, chlordane, chlorotoluron, chloropyrifos, cyanazine, 2,4-D, 2,4-DB, DDT, 1,2-dichloropropane, dichlorprop, dichlorvos, dicofol, dimethoate, diquat, endosulfan, entrin, fenitrothion, fenoprop, glyphosate, isoproturon, lindane, malathion, MCPA, mecoprop, methoxychlor, methylparathion, metolachlor, molinate, parathion, pendimethalin, pentachlorophenol, propanil, simazine, 2,4,5-T, terbuthylazine, trifluralin | Alachlor: 0.02 mg/L; aldicarb:0.01 mg/L; aldrin, dieldrin:0.03 µg/L; atrazine:0.1 mg/L; bentazone:0.5 mg/L; carbaryl:50 µg/L; carbofuran:7 µg/L; chlordane:0.2 µg/L; chlorotoluron:30 µg/L; chloropyrifos:30 µg/L; cyanazine:0.6 µg/L, 2,4-D:30 µg/L, 2,4-DB:90 µg/L; DDT:1 µg/L; 1,2-DCP:20 µg/L; dichlorprop:100 µg/L; dichlorvos:20 µg/L; dicofol:10 µg/L; dimethoate:6 µg/L; diquat:30 µg/L; endosulfan: 20 µg/L; entrin:0.6 µg/L; fenitrothion:8 µg/L; fenoprop:9 mg/L; glyphosate:0.9 mg/L; isoproturon:9 µg/L; lindane:2 µg/L; MCPA:0.7 mg/L; mecoprop:0.01 mg/L; methoxychlor:0.02 mg/L; metolachlor:0.01 mg/L; molinate:6 µg/L; parathion:10 µg/L; pendimethalin:20 µg/L; pentachlorophenol:9 µg/L; simazine:2 µg/L, 2,4,5-T:9 µg/L; terbuthylazine:7 µg/L; trifluralin:20 µg/L. | Turbinate, stomach, thyroid cancer, inhibition of acetylcholinesterase, liver tumor, destruction of estrous cycle, kidney toxicity, inhibition of brain acetylcholinesterase, soft tissue sarcoma, non-Hodgkin lymphoma, mitogenic effects, neurotoxicity, skin irritation, anaemia, hyperglycaemia. | Agriculture, urban pest control. | Alachlor: 0.1 µg/L [G(L)C]; aldicarb: 1 µg/L [HPLC-FD]; aldrin: 0.003 µg/L [GC-ECD]; dieldrin: 0.002 µg/L [GC-ECD]; atrazine: 5 ng/L [HPLC-UVPAD]; bentazone: 0.01 µg/L [LC-MS]; carbosulfan: 0.1 µg/L [HPLC-FD]; chlordane: 0.014 µg/L [GC-ECD]; chlorotoluron: 0.1 µg/L [HPLC-UVD][EC]; chloropyrifos: 1 µg/L [GC-ECD]; cyanazine: 0.01 µg/L [GC-MS]; 2,4-D: 0.1 µg/L [G(L)C- ECD]; 2,4-DB: 1 µg/L [HPLC-ECD (UVD)]; chlorodiphenyltrichloroethane: 11 ng/L [GC-ECD]; 1,2-dichloropropane: 20 ng/L [GC-ECD]; 1,3-dichloropropene: 0.2 µg/L [GC-ECD]; dichlorprop: 1 µg/L [HPLC-ECD (UVD)]; dichlorvos: 10 ng/L [GC]; dicofol: 5 ng/L [GC]; dimethoate: diquat: 1 µg/L [HPLC-UV]; entrin: 2 ng/L [GC-ECD]; fenoprop: 0.2 µg/L [GC-ECD]; isoproturon: 0.1 µg/L [ozonation]; lindane: 0.01 µg/L GC; MCPA: 90 ng/L [GC-ECD]; mecoprop: 10 ng/L [GC-ECD]; methoxychlor: 1 ng/L [GC]; metolachlor: 0.01 µg/L [HPLC-FD]; molinate: 10 ng/L [GC-MS]; parathion: pendimethalin: 10 ng/L [GC-MS]; pentachlorophenol: 5 ng/L [GC-ECD]; propanil: simazine: 10 ng/L [GC-MS]; 2,4,5-T: 20 ng/L [GC-ECD]; terbuthylazine: 0.1 µg/L [HPLC-UVD]; trifluralin: 50 ng/L [GC- FD]. |
NOISE | LDEN: 54 dB (traffic). LDEN: 53 dB (railways). LDEN: 45 dB (aircraft). | Lack of cognitive performances, sleep disturbance, cardiovascular disease, hearing loss. | Traffic, railways, aircrafts, factories’ instrumentation, concerts | 1 dB for type 1 sound level meters |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzato, S.; Leo, A.; Monteduro, A.G.; Chiriacò, M.S.; Primiceri, E.; Sirsi, F.; Milone, A.; Maruccio, G. Advances in the Development of Innovative Sensor Platforms for Field Analysis. Micromachines 2020, 11, 491. https://doi.org/10.3390/mi11050491
Rizzato S, Leo A, Monteduro AG, Chiriacò MS, Primiceri E, Sirsi F, Milone A, Maruccio G. Advances in the Development of Innovative Sensor Platforms for Field Analysis. Micromachines. 2020; 11(5):491. https://doi.org/10.3390/mi11050491
Chicago/Turabian StyleRizzato, Silvia, Angelo Leo, Anna Grazia Monteduro, Maria Serena Chiriacò, Elisabetta Primiceri, Fausto Sirsi, Angelo Milone, and Giuseppe Maruccio. 2020. "Advances in the Development of Innovative Sensor Platforms for Field Analysis" Micromachines 11, no. 5: 491. https://doi.org/10.3390/mi11050491
APA StyleRizzato, S., Leo, A., Monteduro, A. G., Chiriacò, M. S., Primiceri, E., Sirsi, F., Milone, A., & Maruccio, G. (2020). Advances in the Development of Innovative Sensor Platforms for Field Analysis. Micromachines, 11(5), 491. https://doi.org/10.3390/mi11050491