Investigation on Threshold Voltage Adjustment of Threshold Switching Devices with HfO2/Al2O3 Superlattice on Transparent ITO/Glass Substrate
Abstract
:1. Introduction
2. Fabrication and Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, D.-W.; Schendel, A.A.; Mikael, S.; Brodnick, S.K.; Richner, T.J.; Ness, J.P.; Hayat, M.R.; Atry, F.; Frye, S.T.; Pashaie, R.; et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 2014, 5, 5258. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Guo, Y.; Wan, P.; Zhang, H.; Chen, X.; Sun, X. Flexible Transparent Electronic Gas Sensors. Small 2016, 12, 3748–3756. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Scardaci, V.; Kim, H.-Y.; Hallam, T.; Nolan, H.; Bolf, B.E.; Maltbie, G.S.; Abbott, J.E.; Duesberg, G.S. Highly sensitive, transparent, and flexible gas sensors based on gold nanoparticle decorated carbon nanotubes. Sens. Actuators B 2013, 188, 571–575. [Google Scholar] [CrossRef]
- Trung, T.Q.; Ramasundaram, S.; Hwang, B.-U.; Lee, N.-E. An All-Elastomeric Transparent and Stretchable Temperature Sensor for Body-Attachable Wearable Electronics. Adv. Mater. 2016, 28, 502–509. [Google Scholar] [CrossRef]
- Dehuff, N.L.; Kettenring, E.S.; Hong, D.; Chiang, H.Q.; Wager, J.F.; Hoffman, R.L.; Park, C.-H.; Keszler, D.A. Transparent thin-film transistors with zinc indium oxide channel layer. J. Appl. Phys. 2005, 97, 064505. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.W.; Park, J.-W.; Lim, K.S.; Yang, J.-H.; Kang, S.J. Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Appl. Phys. Lett. 2008, 93, 223505. [Google Scholar] [CrossRef]
- Seo, J.W.; Pakr, J.-W.; Lim, K.S.; Kang, S.J.; Hong, Y.H.; Yang, J.H.; Fang, L.; Sung, G.Y.; Kim, H.-K. Transparent flexible resistive random access memory fabricated at room temperature. Appl. Phys. Lett. 2009, 95, 133508. [Google Scholar]
- Park, S.-J.; Lee, J.-P.; Jang, J.S.; Rhu, H.; Yu, H.; You, B.Y.; Kim, C.S.; Kim, K.J.; Cho, Y.J.; Baik, S.; et al. In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive devices. Nanotechnology 2013, 24, 295202. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; McDaniel, M.D.; Posadas, A.; Demkov, A.A.; Ekerdt, J.G.; Yu, E.T. Highly Controllable and Stable Quantized Conductance and Resistive Switching Mechanism in Single-Crystal TiO2 Resistive Memory on Silicon. Nano Lett. 2014, 14, 4360–4367. [Google Scholar] [CrossRef]
- Park, J.; Kwak, M.; Moon, K.; Woo, J.; Lee, D.; Hwang, H. TiOx-Based RRAM Synapse With 64-Levels of Conductance and Symmetric Conductance Change by Adopting a Hybrid Pulse Scheme for Neuromorphic Computing. IEEE Electron Dev. Lett. 2016, 37, 1559–1562. [Google Scholar] [CrossRef]
- Celano, U.; Goux, L.; Opsomer, K.; Iapichino, M.; Belmonte, A.; Franquet, A.; Hoflijk, I.; Detavernier, C.; Jurczak, M.; Vandervorst, W. Scanning probe microscopy as a scalpel to probe filament formation in conductive bridging memory devices. Microelectron. Eng. 2014, 120, 67–70. [Google Scholar] [CrossRef]
- Celano, U.; Goux, L.; Belmonte, A.; Opsomer, K.; Franquet, A.; Schulze, A.; Detavernier, C.; Richard, O.; Bender, H.; Jurczak, M.; et al. Three-Dimensional Observation of the Conductive Filament in Nanoscaled Resistive Memory Devices. Nano Lett. 2014, 14, 2401–2406. [Google Scholar] [CrossRef] [PubMed]
- Goux, L.; Valov, I. Electrochemical processes and device improvement in conductive bridge RAM cells. Phys. Status Solidi A 2016, 213, 274–288. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Yu, S. Compact Modeling of RRAM Devices and Its Applications in 1T1R and 1S1R Array Design. IEEE Trans. Electron Dev. 2015, 62, 4022–4028. [Google Scholar] [CrossRef]
- Lee, H.D.; Kim, S.G.; Cho, K.; Hwang, H.; Choi, H.; Lee, J.; Lee, S.H.; Lee, H.J.; Suh, J.; Chung, S.O.; et al. Integration 4F2 Selector-less Crossbar Array 2Mb ReRAM Based on Transition Metal Oxides for High Density Memory Applications. In Symposium on VLSI Technology; IEEE: Piscataway Township, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Cortese, S.; Trapatseli, M.; Khiat, A.; Prodromakis, T. A TiO2-based Volatile Threshold Switching Selector Device with 107 non linearity and sub 100 pA off current. In International Symposium on VLSI Technology, Systems and Application (VLSI-TSA); IEEE: Piscataway Township, NJ, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Woo, J.; Prakash, A.; Lee, D.; Hwang, H. Threshold Selector with High Selectivity and Steep Slope for Cross-Point Memory Array. IEEE Elect. Dev. Lett. 2015, 36, 681–683. [Google Scholar] [CrossRef]
- Koo, Y.; Lee, S.; Park, S.; Yang, M.; Hwang, H. Simple Binary Ovonic Threshold Switching Material SiTe and Its Excellent Selector Performance for High-Density Memory Array Application. IEEE Elect. Dev. Lett. 2017, 36, 568–571. [Google Scholar] [CrossRef]
- Huang, J.-J.; Tseng, Y.-M.; Luo, W.-C.; Hsu, C.-W.; Hou, T.-H. One Selector-One Resistor (1S1R) Crossbar Array for High-density Flexible Memory Applications. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011. [Google Scholar] [CrossRef]
- Park, J.; Lee, D.; Yoo, J.; Hwang, H. NbO2 based threshold switch device with high operating temperature (>85 °C) for steep-slope MOSFET (~2 mV/dec) with ultra-low voltage operation and improved delay time. In Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 2–6 December 2017. [Google Scholar] [CrossRef]
- Shukla, N.; Ghosh, R.K.; Grisafe, B.; Datta, S. Fundamental Mechanism behind Volatile and Non-Volatile Switching in Metallic Conducting Bridge RAM. In Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 2–6 December 2017. [Google Scholar] [CrossRef]
- Grisafe, B.; Jerry, M.; Smith, J.A.; Datta, S. Performance Enhancement of Ag/HfO2 Metal Ion Threshold Switch Cross-Point Selectors. IEEE Elect. Dev. Lett. 2019, 40, 1602–1605. [Google Scholar] [CrossRef]
- Vitale, W.A.; Casu, E.A.; Biswas, A.; Rosca, T.; Krammer, A.; Luong, G.V.; Zhao, Q.-T.; Mantl, S.; Schuler, A.; Lonescu, A.M. A Steep-Slpoe Transistor Combining Phase-Change and Band-to-Band Tunneling to Achieve a sub-Unity Body Factor. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Grisafe, B.; Zhao, R.; Ghosh, R.K.; Robinson, J.A.; Datta, S. Electrically triggered insulator-to-metal phase transition in two-dimensional (2D) heterostructures. Appl. Phys. Lett. 2018, 113, 124101. [Google Scholar] [CrossRef]
- Song, J.; Park, J.; Moon, K.; Woo, J.; Lim, S.; Yoo, J.; Lee, D.; Hwang, H. Monolithic Integration of AgTe/TiO2 based Threshold Switching Device with TiN liner for Steep Slope Field-Effect Transistors. In Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 3–7 December 2016. [Google Scholar] [CrossRef]
- Shin, J.; Ko, E.; Park, J.; Kim, S.-G.; Lee, J.W.; Yu, H.-Y.; Shin, C. Super steep-switching (SS~2 mV/decade) phase-FinFET with Pb(Zr0.52Ti0.48)O3 threshold switching device. Appl. Phys. Lett. 2018, 113, 102104. [Google Scholar] [CrossRef]
- Shukla, N.; Grisafe, B.; Ghosh, R.K.; Jao, N.; Aziz, A.; Frougier, J.; Jerry, M.; Sonde, S.; Rouvimov, S.; Orlova, T.; et al. Ag/HfO2 based threshold switch with extreme Non-Linearity for Unipolar Cross-Point Memory and Steep-slope Phase-FETs. In Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 3–7 December 2016. [Google Scholar] [CrossRef]
- Song, J.; Woo, J.; Yoo, J.; Chekol, S.A.; Lim, S.; Sung, C.; Hwang, H. Effects of Liner Thickness on the Reliability of AgTe/TiO2-Based Threshold Switching Devices. IEEE Trans. Electron Dev. 2017, 64, 4763–4767. [Google Scholar] [CrossRef]
- Liu, L.B.X.; Cheng, Y.; Mao, J. Ferroelectricity in Al-doped HfO2 on highly doped si substrate. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP), Fort Worth, TX, USA, 22–25 October 2017. [Google Scholar] [CrossRef]
- Mueller, S.; Mueller, J.; Singh, A.; Riedel, S.; Sundqvist, J.; Schroeder, U.; Mikolajick, T. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 2012, 22, 2412–2417. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Q.; Li, C.; Long, S.; Lv, H.; Bi, C.; Huo, Z.; Li, L.; Liu, M. Direct Observation of Conversion between Threshold Switching and Memory Switching Induced by Conductive Filament Morphology. Adv. Funct. Mater. 2014, 24, 5679–5686. [Google Scholar] [CrossRef]
- Qi, J.; Olmedo, M.; Zheng, J.-G.; Liu, J. Multimode Resistive Switching in Single ZnO Nanoisland System. Sci. Rep. 2013, 3, 2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, Y.-J.; Hu, Q.; Yoo, J.W.; Choi, Y.J.; Kang, C.J.; Lee, H.H.; Min, H.-M.; Kim, K.-B.; Yoon, T.-S. Tunable threshold resistive switching characteristics of Pt-Fe2O3 core-shell nanoparticle assembly by space charge effect. Nanoscale 2013, 5, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Fantini, A.; Goux, L.; Clima, S.; Degraeve, R.; Redolfi, A.; Adelmann, C.; Polimeni, G.; Chen, Y.Y.; Komura, M.; Belmonte, A.; et al. Engineering of Hf1-xAlxOy amorphous dielectrics for high-performance RRAM applications. IEEE Inter. Mem. Workshop 2014. [CrossRef]
- Huang, X.; Wu, H.; Gao, B.; Sekar, D.C.; Dai, L.; Kellam, M.; Bronner, G.; Deng, N.; Qian, H. HfO2/Al2O3 multilayer for RRAM arrays: A technique to improve tail-bit retention. Nanotechnology 2016, 27, 395201. [Google Scholar] [CrossRef]
- Traore, B.; Blaise, P.; Vianello, E.; Grampeix, H.; Bonnevialle, A.; Jalaguier, E.; Molas, G.; Jeannot, S.; Perniola, L.; DeSalvo, B.; et al. Microscopic understanding of the low resistance state retention in HfO2and HfAlO based RRAM. In Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014. [Google Scholar] [CrossRef]
- Salinas, J.-F.; Yip, H.-L.; Chueh, C.-C.; Li, C.-Z.; Maldonado, J.-L.; Jen, A.K.-Y. Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells. Adv. Mater. 2012, 24, 6362–6367. [Google Scholar] [CrossRef]
- Ahn, Y.; Jeong, Y.; Lee, Y. Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2012, 4, 6410–6414. [Google Scholar] [CrossRef]
- Motayed, A.; Davydov, A.V.; Bendersky, L.A.; Wood, M.C.; Derenge, M.A.; Wang, D.F.; Jones, K.A.; Mohammad, S.N. High-transparency Ni/Au bilayer contacts to n-type GaN. J. Appl. Phys. 2002, 92, 5218. [Google Scholar] [CrossRef]
- Lai, W.-C.; Lin, K.-W.; Wang, Y.-T.; Chiang, T.-Y.; Chen, P.; Guo, T.-F. Oxidized Ni/Au Transparent Electrode in Efficient CH3NH3Pbl3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. Adv. Mater. 2016, 28, 3290–3297. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-W.; Cho, D.-Y.; Kim, J.; Na, S.-I.; Kim, H.-K. Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 107, 348–354. [Google Scholar] [CrossRef]
- Hwang, B.; An, Y.; Lee, H.; Lee, E.; Becker, S.; Kim, Y.-H.; Kim, H. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities. Sci. Rep. 2017, 7, 41336. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Shin, J.; Moon, S.; Shin, C. Investigation on Threshold Voltage Adjustment of Threshold Switching Devices with HfO2/Al2O3 Superlattice on Transparent ITO/Glass Substrate. Micromachines 2020, 11, 525. https://doi.org/10.3390/mi11050525
Choi Y, Shin J, Moon S, Shin C. Investigation on Threshold Voltage Adjustment of Threshold Switching Devices with HfO2/Al2O3 Superlattice on Transparent ITO/Glass Substrate. Micromachines. 2020; 11(5):525. https://doi.org/10.3390/mi11050525
Chicago/Turabian StyleChoi, Yejoo, Jaemin Shin, Seungjun Moon, and Changhwan Shin. 2020. "Investigation on Threshold Voltage Adjustment of Threshold Switching Devices with HfO2/Al2O3 Superlattice on Transparent ITO/Glass Substrate" Micromachines 11, no. 5: 525. https://doi.org/10.3390/mi11050525
APA StyleChoi, Y., Shin, J., Moon, S., & Shin, C. (2020). Investigation on Threshold Voltage Adjustment of Threshold Switching Devices with HfO2/Al2O3 Superlattice on Transparent ITO/Glass Substrate. Micromachines, 11(5), 525. https://doi.org/10.3390/mi11050525