Resistance Reduction of Conductive Patterns Printed on Textile by Curing Shrinkage of Passivation Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Analysis on Reduction of Deformation-Induced Resistance Increase
2.2. Sample Preparation
2.3. Experimental Setup
3. Results and Discussion
3.1. Reduction of Initial Resistance by Formation of Passivation Layers
3.2. Reduction of Resistance Increase by Formation of Passivation Layers During Cyclic Tensile Test
3.3. Reduction of Resistance Increase by Formation of Passivation Layers During Cyclic Washing Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, R.; Pu, X.; Du, X.; Yang, W.; Wang, J.; Guo, H.; Zhao, S.; Yuan, Z.; Zhang, C.; Li, C.; et al. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human−Machine Interaction. ACS Nano 2018, 12, 5190–5196. [Google Scholar] [CrossRef]
- Cherenack, K.; Pieterson, L.V. Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012, 112, 091301. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Wang, C.; Wang, H.; Jian, M.; Lu, W.; Liang, X.; Zhang, X.; Yang, F.; Zhang, Y. Integrated Textile Sensor Patch for Real-Time and Multiplex Sweat Analysis. Sci. Adv. 2019, 5, eaax0649. [Google Scholar] [CrossRef] [Green Version]
- Jinno, H.; Fukuda, K.; Xu, X.; Park, S.; Suzuki, Y.; Koizumi, M.; Yokota, T.; Osaka, I.; Takimiya, K.; Someya, T. Stretchable and Waterproof Elastomer-Coated Organic Photovoltaics for Washable Electronic Eextile Applications. Nat. Energy 2017, 2, 780–785. [Google Scholar] [CrossRef]
- Jost, K.; Dion, G.; Gogotsi, Y. Textile Energy Storage in Perspective. J. Mater. Chem. A 2014, 2, 10776. [Google Scholar] [CrossRef]
- Karim, N.; Afroj, S.; Malandraki, A.; Butterworth, S.; Beach, C.; Rigout, M.; Novoselov, K.S.; Casson, A.J.; Yeates, S.G. All Inkjet-Printed Graphene-Based Conductive Patterns for Wearable E-textile Applications. J. Mater. Chem. C 2017, 5, 11640–11648. [Google Scholar] [CrossRef] [Green Version]
- Takamatsu, S.; Lonjaret, T.; Crisp, D.; Badier, J.-M.; Malliaras, G.G.; Ismailova, E. Direct Patterning of Organic Conductors on Knitted Textiles for Long-Term Electrocardiography. Sci. Rep. 2015, 5, 15003. [Google Scholar] [CrossRef] [Green Version]
- Takeshita, T.; Yoshida, M.; Takei, Y.; Ouchi, A.; Hinoki, A.; Uchida, H.; Kobayashi, T. Relationship between Contact Pressure and Motion Artifacts in ECG Measurement with Electrostatic Flocked Electrodes Fabricated on Textile. Sci. Rep. 2019, 9, 5897. [Google Scholar] [CrossRef]
- Thekkekara, L.V.; Gu, M. Large-Scale Waterproof and Stretchable Textile-Integrated Laserprinted Graphene Energy Storages. Sci. Rep. 2019, 9, 11822. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, Y.; Zhang, X.; Huo, Z.; Li, X.; Que, M.; Peng, Z.; Wang, H.; Pan, C. A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. Adv. Mater. 2018, 30, e1706738. [Google Scholar] [CrossRef]
- Yoon, J.; Jeong, Y.; Kim, H.; Yoo, S.; Jung, H.S.; Kim, Y.; Hwang, Y.; Hyun, Y.; Hong, W.-K.; Lee, B.H.; et al. Robust and Stretchable Indium Gallium Zinc Oxide-Based Electronic Textiles Formed by Silia-Assisted Transfer Printing. Nat. Commun. 2016, 7, 11477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buechley, L.; Eisenberg, M. The LilyPad Arduino: Toward Wearable Engineering for Everyone. IEEE Pervasive Comput. 2008, 7, 12–15. [Google Scholar] [CrossRef]
- Cherenack, K.; Zysset, C.; Kinkeldei, T.; Münzenrieder, N.; Tröster, G. Woven Electronic Fibers with Sensing and Display Functions for Smart Textiles. Adv. Mater. 2010, 22, 5178–5182. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.; Heo, J.-S.; Kim, M.; Lee, J.H.; Park, S.K.; Kim, Y.-H. Highly Sensitive Textile-Based Strain Sensors using Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate/Silver Nanowire-Coated Nylon Threads with Poly-L-Lysine Surface Modification. RSC Adv. 2017, 7, 53373–53378. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Tao, X.M. Three-Dimensionally Deformable, Highly Stretchable, Permeable, Durable and Washable Fabric Circuit Boards. Proc. R. Soc. A 2014, 470, 20140472. [Google Scholar] [CrossRef]
- Hong, H.; Hu, J.; Yan, X. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags. ACS Appl. Mater. Interfaces 2019, 11, 27318–27326. [Google Scholar] [CrossRef]
- Jin, H.; Matsuhisa, N.; Lee, S.; Abbas, M.; Yokota, T.; Someya, T. Enhancing the Performance of Stretchable Conductors for E-Textiles by Controlled Ink Permeation. Adv. Mater. 2017, 29, 1605848. [Google Scholar] [CrossRef]
- Koshi, T.; Nomura, K.; Yoshida, M. Requirements for Durability Improvement of Conductive Patterns Permeated in Textiles under Cyclic Tensile Deformation. Micromachines 2019, 10, 721. [Google Scholar] [CrossRef] [Green Version]
- Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable Elastic Conductors with a High Conductivity for Electronic Textile Applications. Nat. Commun. 2015, 6, 7461. [Google Scholar] [CrossRef]
- Qiu, S.; La, T.G.; Zheng, L.; Cho, C.; Elias, A.L.; Rieger, J.; Chung, H.J. Mechanically and Electrically Robust Stretchable E-Textiles by Controlling the Permeation Depth of Silver-Based Conductive Inks. Flex. Print. Electron. 2019, 4, 025006. [Google Scholar] [CrossRef]
- Shuai, X.; Liang, X.; Hu, Y.; Zhao, T.; Zhu, P.; Sun, R.; Lu, D.D.; Wong, C.-P. Low Cost and Highly Conductive Elastic Composites for Flexible and Printable Electronics. J. Mater. Chem. C 2016, 4, 5839–5848. [Google Scholar]
- Kim, Y.; Kim, H.; Yoo, H.-J. Electrical Characterization of Screen-Printed Circuits on the Fabric. IEEE Trans. Adv. Packag. 2010, 33, 196–205. [Google Scholar]
- Nomura, K.; Horii, Y.; Kanazawa, S.; Kusaka, Y.; Ushijima, H. Fabrication of a Textile-Based Wearable Blood Leakage Sensor using Screen-Offset Printing. Sensors 2018, 18, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, A.A. The Phenomena of Rupture and Flow in Solids. Philos. Trans. Roy. R. Soc. Ser. A 1921, 221, 163–198. [Google Scholar]
- Irwin, G.R. Analysis of Stresses and Strains near the End of a Crack Traversing a Plate. J. Appl. Mech. 1957, 24, 351–369. [Google Scholar]
- Newman, J.C., Jr.; Raju, I.S. Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies Subjected to Tension and Bending Loads; NASA Langley Research Center: Hampton, VA, USA, 1984; NASA-TM-85793.
- Koshi, T.; Nomura, K.; Yoshida, M. Electronic Component Mounting for Durable E-Textiles: Direct Soldering of Components onto Textile-Based Deeply Permeated Conductive Patterns. Micromachines 2020, 11, 209. [Google Scholar] [CrossRef] [Green Version]
- Adrega, T.; Lacour, S.P. Stretchable Gold Conductors Embedded in PDMS and Patterned by Photolithography: Fabrication and Electromechanical Characterization. J. Micromech. Microeng. 2010, 20, 055025. [Google Scholar] [CrossRef]
- Lacour, S.P.; Chan, D.; Wagner, S. Mechanisms of Reversible Stretchability of Thin Metal Films on Elastomeric Substrates. Appl. Phys. Lett. 2006, 88, 204103. [Google Scholar] [CrossRef]
- Madsen, M.H.; Feidenhans’l, N.A.; Hansen, P.-E.; Garnæs, J.; Dirscherl, K. Accounting for PDMS Shrinkage when Replicating Structures. J. Micromech. Microeng. 2014, 24, 127002. [Google Scholar] [CrossRef]
Curing Temperature Tc | Heating Temperature and Its Total Time of Application to Each Layer | ||
---|---|---|---|
Conductive Layer | Passivation Layer (Front Side) | Passivation Layer (Back Side) | |
20 °C (RT) (expanding) | 120 °C 30 min + 20 °C 48 h + 20 °C 48 h | 20 °C 48 h | 20 °C 48 h + 20 °C 48 h |
40 °C (shrinking) | 120 °C 30 min + 40 °C 16 h + 40 °C 16 h | 40 °C 16 h | 40 °C 16 h + 40 °C 16 h |
60 °C (shrinking) | 120 °C 30 min + 60 °C 4 h + 60 °C 4 h | 60 °C 4 h | 60 °C 4 h + 60 °C 4 h |
80 °C (shrinking) | 120 °C 30 min + 80 °C 2 h + 80 °C 2 h | 80 °C 2 h | 80 °C 2 h + 80 °C 2 h |
100 °C (shrinking) | 120 °C 30 min + 100 °C 80 min + 100 °C 80 min | 100 °C 80 min | 100 °C 80 min + 100 °C 80 min |
120 °C (shrinking) | 120 °C 30 min + 120 °C 40 min + 120 °C 40 min | 120 °C 40 min | 120 °C 40 min + 120 °C 40 min |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshi, T.; Nomura, K.-i.; Yoshida, M. Resistance Reduction of Conductive Patterns Printed on Textile by Curing Shrinkage of Passivation Layers. Micromachines 2020, 11, 539. https://doi.org/10.3390/mi11060539
Koshi T, Nomura K-i, Yoshida M. Resistance Reduction of Conductive Patterns Printed on Textile by Curing Shrinkage of Passivation Layers. Micromachines. 2020; 11(6):539. https://doi.org/10.3390/mi11060539
Chicago/Turabian StyleKoshi, Tomoya, Ken-ichi Nomura, and Manabu Yoshida. 2020. "Resistance Reduction of Conductive Patterns Printed on Textile by Curing Shrinkage of Passivation Layers" Micromachines 11, no. 6: 539. https://doi.org/10.3390/mi11060539
APA StyleKoshi, T., Nomura, K. -i., & Yoshida, M. (2020). Resistance Reduction of Conductive Patterns Printed on Textile by Curing Shrinkage of Passivation Layers. Micromachines, 11(6), 539. https://doi.org/10.3390/mi11060539