A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena
Abstract
:1. Introduction
2. Methods
2.1. Basic Theory of Bipolar Floating Electrode for Rectification with a Janus Nanopore
2.2. Chip Geometry and Device Operation Principle
2.3. Hypothesis and Approximation Applied in the Present Study
2.4. Mathematical Description
2.5. Boundary and Conjugating Conditions
2.5.1. Boundary and Conjugating Conditions for the Electric Field
2.5.2. Boundary Conditions for Ion Transport
2.5.3. Boundary Conditions for Electroosmotic Flow Field
2.5.4. Numerical Simulation
2.6. Scaling Analysis
2.7. Quantification of the Rectification Performance
3. Results and Discussion
3.1. Effect of Length Ratio of the Metallic Wall Relative to the Overall Nanopore Axial Extension
3.2. Effect of the Native Surface Charge Density of the Dielectric Wall
3.3. Effect of the Electrical Polarizability of the Conducting Wall
3.4. Influence of the Mismatch between Debye Length and Nanopore Size
3.5. Influence of the Applied DC Voltage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hu, G.; Li, D. Multiscale phenomena in microfluidics and nanofluidics. Chem. Eng. Sci. 2007, 62, 3443–3454. [Google Scholar] [CrossRef]
- Hibara, A.; Fukuyama, M.; Chung, M.; Priest, C.; Proskurnin, M.A. Interfacial phenomena and fluid control in micro/nanofluidics. Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 2016, 32, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazant, M.Z.; Thornton, K.; Ajdari, A. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 2004, 70, 021506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, L.H.; Zhang, M.; Qian, S.; Hsu, J.P.; Tseng, S. Ion concentration polarization in polyelectrolyte-modified nanopores. J. Phys. Chem. C 2012, 116, 8672–8677. [Google Scholar] [CrossRef]
- Yeh, L.H.; Zhang, M.; Qian, S. Ion transport in a ph-regulated nanopore. Anal. Chem. 2013, 85, 7527–7534. [Google Scholar] [CrossRef]
- Bonnefont, A.; Argoul, F.; Bazant, M.Z. Analysis of diffuse-layer effects on time-dependent interfacial kinetics. J. Electroanal. Chem. 2001, 500, 52–61. [Google Scholar] [CrossRef]
- Ramos, A. Electrokinetics and Electrohydrodynamics in Microsystems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 530. [Google Scholar]
- Yeh, L.H.; Hsu, J.P. Electrophoresis of a finite rod along the axis of a long cylindrical microchannel filled with carreau fluids. Microfluid. Nanofluid. 2009, 7, 383–392. [Google Scholar] [CrossRef]
- Chang, H.-C.; Yossifon, G.; Demekhin, E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux. Annu. Rev. Fluid Mech. 2012, 44, 401–426. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Hao, J.; Bao, B.; Zhou, Y.; Zhang, H.; Pang, J.; Jiang, Z.; Jiang, L. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Sci. Adv. 2018, 4, eaau1665. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Peng, B.; Sabuncu, A.C.; Nam, S.; Ahn, C.; Kim, M.J.; Kim, M. Multiple consecutive recapture of rigid nanoparticles using a solid-state nanopore sensor. Electrophoresis 2018, 39, 833–843. [Google Scholar] [CrossRef]
- Mishchuk, N.A.; Heldal, T.; Volden, T.; Auerswald, J.; Knapp, H. Micropump based on electroosmosis of the second kind. Electrophoresis 2009, 30, 3499. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Zhen, Z.; Chao, L.; Longcheng, G.; Yong, Z.; Lijun, Y.; Liping, W.; Lei, J. Engineered nanochannel membranes with diode-like behavior for energy conversion over a wide ph range. ACS Appl. Mater. Interfaces 2018, 11, 23815–23821. [Google Scholar]
- Park, S.; Yossifon, G. Electrothermal based active control of ion transport in a microfluidic device with an ion-permselective membrane. Nanoscale 2018, 10, 11633–11641. [Google Scholar] [CrossRef]
- Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L. Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 2017, 139, 8905–8914. [Google Scholar] [CrossRef] [PubMed]
- Dhopeshwarkar, R.; Crooks, R.M.; Hlushkou, D.; Tallarek, U. Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane. Anal. Chem. 2008, 80, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P. Ion current rectification influenced by length and location of surface charge in fluidic unipolar conical nanopores. Sens. Actuators B Chem. 2016, 230, 493–500. [Google Scholar] [CrossRef]
- Singh, K.P.; Kumar, M. Effect of nanochannel diameter and debye length on ion current rectification in a fluidic bipolar diode. J. Phys. Chem. C 2011, 115, 22917–22924. [Google Scholar] [CrossRef]
- Cheng, L.J.; Guo, L.J. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 2009, 3, 575–584. [Google Scholar] [CrossRef]
- Singh, K.P.; Guo, C. Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor. Phys. Chem. Chem. Phys. 2017, 19, 15701–15708. [Google Scholar] [CrossRef]
- Paik, K.H.; Liu, Y.; Tabard-Cossa, V.; Waugh, M.J.; Huber, D.E.; Provine, J.; Howe, R.T.; Dutton, R.W.; Davis, R.W. Control of DNA capture by nanofluidic transistors. ACS Nano 2012, 6, 6767–6775. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Xue, S.; Hsu, S.C.; Yeh, L.H.; Qian, S.; Tan, H. Programmable ionic conductance in a ph-regulated gated nanochannel. Phys. Chem. Chem. Phys. 2014, 16, 20138–20146. [Google Scholar] [CrossRef]
- Zhou, K.; Perry, J.M.; Jacobson, S.C. Transport and sensing in nanofluidic devices. Annu. Rev. Anal. Chem. 2011, 4, 321–341. [Google Scholar] [CrossRef] [PubMed]
- Vlassiouk, I.; Kozel, T.R.; Siwy, Z.S. Biosensing with nanofluidic diodes. J. Am. Chem. Soc. 2009, 131, 8211–8220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Mitta, G.; Peinetti, A.S.; Cortez, M.L.; Toimil-Molares, M.E.; Trautmann, C.; Azzaroni, O. Highly sensitive biosensing with solid-state nanopores displaying enzymatically reconfigurable rectification properties. Nano Lett. 2018. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsson, E.O.; Tybrandt, K.; Berggren, M. Ion diode logics for ph control. Lab. Chip 2012, 12, 2507–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, Y.; Edri, Y.; Yossifon, G. Asymmetry-induced electric current rectification in permselective systems. Phys. Rev. E 2015, 92, 033018. [Google Scholar] [CrossRef] [PubMed]
- Constantin, D.; Siwy, Z.S. Poisson-nernst-planck model of ion current rectification through a nanofluidic diode. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2007, 76, 041202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobedo, C.; Brolo, A.G.; Gordon, R.; Sinton, D. Optofluidic concentration: Plasmonic nanostructure as concentrator and sensor. Nano Lett. 2012, 12, 1592–1596. [Google Scholar] [CrossRef]
- Guan, W.; Fan, R.; Reed, M.A. Field-effect reconfigurable nanofluidic ionic diodes. Nat. Commun. 2011, 2, 506. [Google Scholar] [CrossRef]
- Wu, S.; Wildhaber, F.; Bertsch, A.; Brugger, J. Field effect modulated nanofluidic diode membrane based on al2o3/w heterogeneous nanopore arrays. Appl. Phys. Lett. 2013, 102, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Manavizadeh, N.; Raissi, F.; Soleimani, E.A.; Pourfath, M.; Selberherr, S. Performance assessment of nanoscale field-effect diodes. IEEE Trans. Electron. Devices 2011, 58, 2378–2384. [Google Scholar] [CrossRef] [Green Version]
- Daiguji, H.; Oka, Y.; Shirono, K. Nanofluidic diode and bipolar transistor. Nano Lett. 2005, 5, 2274–2280. [Google Scholar] [CrossRef] [PubMed]
- Tallarek, U.; Rapp, E.; Sann, H.; Reichl, U.; Seidel-Morgenstern, A. Quantitative study of electrokinetic transport in porous media by confocal laser scanning microscopy. Langmuir 2003, 19, 4527–4531. [Google Scholar] [CrossRef]
- Hlushkou, D.; Dhopeshwarkar, R.; Crooks, R.M.; Tallarek, U. The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units. Lab. Chip 2008, 8, 1153. [Google Scholar] [CrossRef]
- Dhopeshwarkar, R.; Hlushkou, D.; Nguyen, M.; Tallarek, U.; Crooks, R.M. Electrokinetics in microfluidic channels containing a floating electrode. J. Am. Chem. Soc. 2008, 130, 10480–10481. [Google Scholar] [CrossRef]
- Knust, K.N.; Hlushkou, D.; Anand, R.K.; Tallarek, U.; Crooks, R.M. Electrochemically mediated seawater desalination. Angew. Chem. 2013, 125, 8265–8268. [Google Scholar] [CrossRef] [Green Version]
- Hlushkou, D.; Knust, K.N.; Crooks, R.M.; Tallarek, U. Numerical simulation of electrochemical desalination. J. Phys. Condens. Matter An. Inst. Phys. J. 2016, 28, 194001. [Google Scholar] [CrossRef] [Green Version]
- Nischang, I.; Tallarek, U. Fluid dynamics in capillary and chip electrochromatography. Electrophoresis 2007. [Google Scholar] [CrossRef]
- Nischang, I.; Tallarek, U. Inherent peak compression of charged analytes in electrochromatography. J. Sep. Sci. 2009. [Google Scholar] [CrossRef]
- Albrecht, T.; Macpherson, J.; Magnussen, O.; Fermin, D.; Crooks, R.; Gooding, J.; Hersbach, T.; Kanoufi, F.; Schuhmann, W.; Bentley, C. Electrochemistry of single nanoparticles: General discussion. Faraday Discuss. 2016, 193, 387–413. [Google Scholar] [CrossRef]
- Tallarek, U.; Rapp, E.; Scheenen, T.; Bayer, E.; Van As, H. Electroosmotic and pressure-driven flow in open and packed capillaries:? Velocity distributions and fluid dispersion. Anal. Chem. 2000, 72, 2292–2301. [Google Scholar] [CrossRef] [PubMed]
- Hlushkou, D.; Perdue, R.K.; Dhopeshwarkar, R.; Crooks, R.M.; Tallarek, U. Electric field gradient focusing in microchannels with embedded bipolar electrode. Lab. Chip 2009, 9, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ren, Y.; Tao, Y.; Yao, B.; Liu, N.; Wu, Q. A universal design of field-effect-tunable microfluidic ion diode based on a gating cation-exchange nanoporous membrane. Phys. Fluid. 2017, 29, 112001. [Google Scholar] [CrossRef]
- Alicia, B.; Gilad, Y. Observing electrokinetic janus particle-channel wall interaction using microparticle image velocimetry. Langmuir ACS J. Surf. Colloids 2015, 31, 8243–8250. [Google Scholar]
- Leinweber, F.C.; Eijkel, J.C.T.; Bower, J.G.; van den Berg, A. Continuous flow microfluidic demixing of electrolytes by induced charge electrokinetics in structured electrode arrays. Anal. Chem. 2006, 78, 1425–1434. [Google Scholar] [CrossRef]
- Squires, T.M.; Bazant, M.Z. Induced-charge electro-osmosis. J. Fluid Mech. 2004, 509, 217–252. [Google Scholar] [CrossRef] [Green Version]
- Bazant, M.Z.; Squires, T.M. Induced-charge electrokinetic phenomena: Theory and microfluidic applications. Phys. Rev. Lett. 2004, 92, 066101. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Wong, T.N.; Che, Z.; Marcos. Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus. Phys. Fluids 2016. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Wong, T.N.; Marcos. Pair interactions in induced charge electrophoresis of conducting cylinders. Int. J. Heat Mass Transf. 2015. [Google Scholar] [CrossRef]
- Feng, H.; Wong, T.N.; Che, Z. Induced charge electrophoresis of a conducting cylinder in a non-conducting cylindrical pore and its micromotoring application. Phys. Rev. Fluids 2016, 1, 044103. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Wong, T.N. Induced-charge electro-osmosis in dielectric annuli. Appl. Math. Comput. 2018. [Google Scholar] [CrossRef]
- Feng, H.; Huang, Y.; Wong, T.N.; Duan, F. Electrolyte effect in induced charge electroosmosis. Soft Matter 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Combs, C.; Su, Y.-S.; Yeh, L.-H.; Siwy, Z. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 2019, 141, 3691. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-P.; Su, T.-C.; Peng, P.-H.; Hsu, S.-C.; Yeh, L.-H. Unraveling the anomalous surface-charge-dependent osmotic power using a single funnel-shaped nanochannel. ACS Nano 2019, 13, 13374. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Chang, H.; Zhong, X.; Wong, T. Recent advancement in induced-charge electrokinetic phenomena and their micro-and nano-fluidic applications. Adv. Colloid Interface Sci. 2020, 280, 102159. [Google Scholar] [CrossRef]
- Zhao, C.L.; Yang, C. Ac field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Electrophoresis 2011, 32, 629–637. [Google Scholar] [CrossRef]
- Pascall, A.J.; Squires, T.M. Induced charge electro-osmosis over controllably contaminated electrodes. Phys. Rev. Lett. 2010, 104, 088301. [Google Scholar] [CrossRef]
- Zehavi, M.; Boymelgreen, A.; Yossifon, G. Competition between induced-charge electro-osmosis and electrothermal effects at low frequencies around a weakly polarizable microchannel corner. Phys. Rev. Appl. 2016, 5, 044013. [Google Scholar] [CrossRef]
- Scida, K.; Eden, A.; Arroyo-Currás, N.Y.; MacKenzie, S.; Satik, Y.; Meinhart, C.D.; Eijkel, J.C.; Pennathur, S. Fluorescence-based observation of transient electrochemical and electrokinetic effects at nanoconfined bipolar electrodes. ACS Appl. Mater. Interfaces 2019, 11, 13777–13786. [Google Scholar] [CrossRef]
- Eden, A.; Scida, K.; Arroyo-Curras, N.; Eijkel, J.C.T.; Meinhart, C.D.; Pennathur, S. Modeling faradaic reactions and electrokinetic phenomena at a nanochannel-confined bipolar electrode. J. Phys. Chem. C 2019, 123, 5353–5364. [Google Scholar] [CrossRef]
- Laws, D.R.; Hlushkou, D.; Perdue, R.K.; Tallarek, U.; Crooks, R.M. Bipolar electrode focusing: Simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode. Anal. Chem. 2009, 81, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.K.; Sheridan, E.; Knust, K.N.; Crooks, R.M. Bipolar electrode focusing: Faradaic ion concentration polarization. Anal. Chem. 2011, 83, 2351–2358. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, E.; Hlushkou, D.; Knust, K.N.; Tallarek, U.; Crooks, R.M. Enrichment of cations via bipolar electrode focusing. Anal. Chem. 2012, 84, 7393–7399. [Google Scholar] [CrossRef] [PubMed]
- Boymelgreen, A.M.; Balli, T.; Miloh, T.; Yossifon, G. Active colloids as mobile microelectrodes for unified label-free selective cargo transport. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhakaran, R.A.; Zhou, Y.; Zhao, C.; Hu, G.; Song, Y.; Wang, J.; Yang, C.; Xuan, X. Induced charge effects on electrokinetic entry flow. Phys. Fluids 2017, 29, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Canpolat, C. Induced-charge electro-osmotic flow around cylinders with various orientations. Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci. 2017, 231, 4057–4066. [Google Scholar] [CrossRef]
- Davidson, S.M.; Andersen, M.B.; Mani, A. Chaotic induced-charge electro-osmosis. Phys. Rev. Lett. 2014, 112, 128302. [Google Scholar] [CrossRef]
- Gregersen, M.M.; Andersen, M.B.; Soni, G.; Meinhart, C.; Bruus, H. Numerical analysis of finite debye-length effects in induced-charge electro-osmosis. Phys. Rev. E 2009, 79, 066316. [Google Scholar] [CrossRef] [Green Version]
- Eckstein, Y.; Yossifon, G.; Seifert, A.; Miloh, T. Nonlinear electrokinetic phenomena around nearly insulated sharp tips in microflows. J. Colloid Interface Sci. 2009, 338, 243–249. [Google Scholar] [CrossRef]
- Yossifon, G.; Frankel, I.; Miloh, T. On electro-osmotic flows through microchannel junctions. Phys. Fluids 2006, 18, 381. [Google Scholar] [CrossRef]
- Leinweber, F.C.; Tallarek, U. Concentration polarization-based nonlinear electrokinetics in porous media: Induced-charge electroosmosis. J. Phys. Chem. B 2005, 109, 21481–21485. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hinkle, P.; Menestrina, J.; Vlassiouk, I.V.; Siwy, Z.S. Polarization of gold in nanopores leads to ion current rectification. J. Phys. Chem. Lett. 2016, 7, 4152–4158. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, K.; Mafé, S.; Alcaraz, A.; Ramireez, P. Effects of water dielectric saturation on the space–charge junction of a fixed-charge bipolar membrane. Chem. Phys. Lett. 2000, 326, 87–92. [Google Scholar] [CrossRef]
- Han, W.; Chen, X. Nano-electrokinetic ion enrichment in a micro-nanofluidic preconcentrator with nanochannel’s cantor fractal wall structure. Appl. Nanosci. 2019. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, W.; Ren, Y.; Hu, Y.; Li, G.; Ma, G.; Wu, Q. On developing field-effect-tunable nanofluidic ion diodes with bipolar, induced-charge electrokinetics. Micromachines 2018, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, K.H.; Grego, S.; Velev, O.D. An ac electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Langmuir 2005, 21, 6603–6612. [Google Scholar] [CrossRef]
- Thamida, S.K.; Chang, H.-C. Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges. Phys. Fluids 2002, 14, 4315–4328. [Google Scholar] [CrossRef]
- García-Sánchez, P.; Ramos, A.; Green, N.; Morgan, H. Traveling-wave electrokinetic micropumps: Velocity, electrical current, and impedance measurements. Langmuir 2008, 24, 9361–9369. [Google Scholar] [CrossRef] [Green Version]
- García-Sánchez, P.; Ramos, A.; González, A.; Green, N.G.; Morgan, H. Flow reversal in traveling-wave electrokinetics: An analysis of forces due to ionic concentration gradients. Langmuir 2009, 25, 4988–4997. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Jiang, H.; Ramos, A.; García-Sánchez, P. Ac electrokinetic pumping on symmetric electrode arrays. Microfluid. Nanofluidics 2009, 7, 767–772. [Google Scholar] [CrossRef]
- Wu, J. Ac electro-osmotic micropump by asymmetric electrode polarization. J. Appl. Phys. 2008, 103, 056302–056569. [Google Scholar] [CrossRef]
- Nishizawa, M.; Menon, V.P.; Martin, C.R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 1995, 268, 700–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugioka, H. Dc step response of induced-charge electro-osmosis between parallel electrodes at large voltages. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014, 90, 013007. [Google Scholar] [CrossRef]
- Mani, A.; Zangle, T.A.; Santiago, J.G. On the propagation of concentration polarization from microchannel–nanochannel interfaces part i: Analytical model and characteristic analysis. Langmuir 2009, 25, 3898–3908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zangle, T.A.; Mani, A.; Santiago, J.G. On the propagation of concentration polarization from microchannel–nanochannel interfaces part II: Numerical and experimental study. Langmuir 2009, 25, 3909–3916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eden, A.; Mccallum, C.; Storey, B.D.; Pennathur, S.; Meinhart, C.D. Analyte preconcentration in nanofluidic channels with nonuniform zeta potential. Phys. Rev. Fluids 2017, 2, 124203. [Google Scholar] [CrossRef]
- Jia, M.; Kim, T. Multiphysics simulation of ion concentration polarization induced by nanoporous membranes in dual channel devices. Anal. Chem. 2014, 86, 7360–7367. [Google Scholar] [CrossRef]
- Ko, S.H.; Song, Y.-A.; Kim, S.J.; Kim, M.; Han, J.; Kang, K.H. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab. Chip 2012, 12, 4472–4482. [Google Scholar] [CrossRef]
- Kwak, R.; Kim, S.J.; Han, J. Continuous-flow biomolecule and cell concentrator by ion concentration polarization. Anal. Chem. 2011, 83, 7348–7355. [Google Scholar] [CrossRef]
- Kim, P.; Kim, S.J.; Han, J.; Suh, K.Y. Stabilization of ion concentration polarization using a heterogeneous nanoporous junction. Nano Lett. 2009, 10, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Khair, A.S.; Squires, T.M. Fundamental aspects of concentration polarization arising from nonuniform electrokinetic transport. Phys. Fluids 2008, 20, 087102. [Google Scholar] [CrossRef] [Green Version]
- Lian, M.; Wu, J. Ultrafast micropumping by biased alternating current electrokinetics. Appl. Phys. Lett. 2009, 94, 672. [Google Scholar] [CrossRef]
- Wu, X. General equivalent circuits for faradaic electrode processes under electrochemical reaction control. J. Electrochem. Soc. 1999, 146, 1840–1847. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Sun, Y.; Yan, H.; Ren, Y.; Song, C.; Wu, Q. A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena. Micromachines 2020, 11, 542. https://doi.org/10.3390/mi11060542
Liu W, Sun Y, Yan H, Ren Y, Song C, Wu Q. A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena. Micromachines. 2020; 11(6):542. https://doi.org/10.3390/mi11060542
Chicago/Turabian StyleLiu, Weiyu, Yongjun Sun, Hui Yan, Yukun Ren, Chunlei Song, and Qisheng Wu. 2020. "A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena" Micromachines 11, no. 6: 542. https://doi.org/10.3390/mi11060542
APA StyleLiu, W., Sun, Y., Yan, H., Ren, Y., Song, C., & Wu, Q. (2020). A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena. Micromachines, 11(6), 542. https://doi.org/10.3390/mi11060542