The Relationships of Microscopic Evolution to Resistivity Variation of a FIB-Deposited Platinum Interconnector
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials and In Situ Experiments
2.2. First-Principle Calculations
3. Results and Discussion
3.1. Electrical Resistivity Results
3.2. Microstructure Evolution
3.3. Resistivity Transition Analysis
3.4. Lattice Constant of Pt Nanocrystal Evolution
3.5. The Probable Reason of Pt Lattice Parameter Variation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dannenberg, R.; Stach, E.A.; Groza, J.R.; Dresser, B.J. In situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline ag thin films. Thin Solid Films 2000, 370, 54–62. [Google Scholar] [CrossRef]
- Fujii, T.; Kaji, H.; Kondo, H.; Hamada, K.; Arita, M.; Takahashi, Y. I–V hysteresis of Pr0.7Ca0.3MnO3 during TEM observation. IOP Conf. Ser. Mater. Sci. Eng. 2010, 8, 012033. [Google Scholar] [CrossRef]
- Kwon, D.-H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.-S.; Park, G.-S.; Lee, B.; Han, S.; et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 2010, 5, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Bando, Y.; Wang, W.; Bai, X.; Golberg, D. Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 2010, 4, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-G.; Zherebetskyy, D.; Xin, H.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L.-W.; Zheng, H. Facet development during platinum nanocube growth. Science 2014, 345, 916–919. [Google Scholar] [CrossRef]
- Liu, S.; Xie, J.; Su, Q.; Du, G.; Zhang, S.; Cao, G.; Zhu, T.; Zhao, X. Understanding li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy 2014, 8, 84–94. [Google Scholar] [CrossRef]
- Zeng, Z.; Liang, W.-I.; Liao, H.-G.; Xin, H.L.; Chu, Y.-H.; Zheng, H. Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 2014, 14, 1745–1750. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, J.; Jiang, L.; Shi, J.-A.; Zhang, Q.; Yang, Z.; Zou, D.; Wang, J.; Yu, X.; Xiao, R.; et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J. Am. Chem. Soc. 2017, 139, 4274–4277. [Google Scholar] [CrossRef]
- Ren, K.; Cheng, Y.; Xia, M.; Lv, S.; Song, Z. In situ observation of Ge2Sb2Te5 crystallization at the passivated interface. Ceram. Int. 2019, 45, 19542–19546. [Google Scholar] [CrossRef]
- Choi, S.-J.; Park, G.-S.; Kim, K.-H.; Cho, S.; Yang, W.-Y.; Li, X.-S.; Moon, J.-H.; Lee, K.-J.; Kim, K. In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 2011, 23, 3272–3277. [Google Scholar] [CrossRef]
- Wang, C.-M.; Li, X.; Wang, Z.; Xu, W.; Liu, J.; Gao, F.; Kovarik, L.; Zhang, J.-G.; Howe, J.; Burton, D.J.; et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett. 2012, 12, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-M.; Genc, A.; Cheng, H.; Pullan, L.; Baer, D.R.; Bruemmer, S.M. In situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles. Sci. Rep. 2014, 4, 3683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Yao, N. Advances in sealed liquid cells for in situ TEM electrochemial investigation of lithium-ion battery. Nano Energy 2015, 11, 196–210. [Google Scholar] [CrossRef]
- Duchamp, M.; Migunov, V.; Tavabi, A.H.; Mehonic, A.; Buckwell, M.; Munde, M.; Kenyon, A.J.; Dunin-Borkowski, R.E. In situ transmission electron microscopy of resistive switching in thin silicon oxide layers. Resolut. Discov. 2016, 1, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Almeida, T.P.; McGrouther, D.; Pivak, Y.; Garza, H.H.P.; Temple, R.; Massey, J.; Marrows, C.H.; McVitie, S. Preparation of high-quality planar FeRh thin films for in situ TEM investigations. J. Phys. Conf. Ser. 2017, 903, 012022. [Google Scholar] [CrossRef] [Green Version]
- Zintler, A.; Kunz, U.; Pivak, Y.; Sharath, S.U.; Vogel, S.; Hildebrandt, E.; Kleebe, H.-J.; Alff, L.; Molina-Luna, L. FIB based fabrication of an operative Pt/HfO2/TiN device for resistive switching inside a transmission electron microscope. Ultramicroscopy 2017, 181, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Melngailis, J. Focused ion beam induced deposition: A review. Micro-DL Tentat. 1991, 1465, 36–49. [Google Scholar] [CrossRef]
- Gozum, J.E.; Pollina, D.M.; Jensen, J.A.; Girolami, G.S. “Tailored” organometallics as precursors for the chemical vapor deposition of high-purity palladium and platinum thin films. J. Am. Chem. Soc. 1988, 110, 2688–2689. [Google Scholar] [CrossRef]
- Barry, J.D.; Ervin, M.; Molstad, J.; Wickenden, A.; Brintlinger, T.; Hoffman, P.; Meingailis, J. Electron beam induced deposition of low resistivity platinum from Pt(PF3)4. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2006, 24, 3165–3168. [Google Scholar] [CrossRef]
- Ervin, M.H.; Chang, D.; Nichols, B.; Wickenden, A.; Barry, J.; Melngailis, J. Annealing of electron beam induced deposits of platinum from Pt(PF3)4. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2007, 25, 2250–2254. [Google Scholar] [CrossRef]
- Landheer, K.; Rosenberg, S.G.; Bernau, L.; Swiderek, P.; Utke, I.; Hagen, C.W.; Fairbrother, D.H. Low-energy electron-induced decomposition and reactions of adsorbed tetrakis(trifluorophosphine)platinum [Pt(PF3)4]. J. Phys. Chem. C 2011, 115, 17452–17463. [Google Scholar] [CrossRef]
- Zlatar, M.; Allan, M.; Fedor, J. Excited states of Pt(PF3)4 and their role in focused electron beam nanofabrication. J. Phys. Chem. C 2016, 120, 10667–10674. [Google Scholar] [CrossRef]
- Drews, T.; Rusch, D.; Seidel, S.; Willemsen, S.; Seppelt, K. Systematic reactions of [Pt(PF3)4]. Chem. Eur. J. 2008, 14, 4280–4286. [Google Scholar] [CrossRef]
- Tao, T.; Wilkinson, W.; Melngailis, J. Focused ion beam induced deposition of platinum for repair processes. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1991, 9, 162–164. [Google Scholar] [CrossRef]
- Tao, T.; Ro, J.; Melngailis, J.; Xue, Z.; Kaesz, H.D. Focused ion beam induced deposition of platinum. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1990, 8, 1826–1829. [Google Scholar] [CrossRef]
- Koops, H.W.P.; Kaya, A.; Weber, M. Fabrication and characterization of platinum nanocrystalline material grown by electron-beam induced deposition. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1995, 13, 2400–2403. [Google Scholar] [CrossRef]
- Chen, Y.; Kaesz, H.D.; Thridandam, H.; Hicks, R.F. Low-temperature organometallic chemical vapor deposition of platinum. Appl. Phys. Lett. 1988, 53, 1591–1592. [Google Scholar] [CrossRef]
- Koplitz, L.V.; Shuh, D.K.; Chen, Y.-J.; Williams, R.S.; Zink, J.I. Laser-driven chemical vapor deposition of platinum at atmospheric pressure and room temperature from CpPt(CH3)3. Appl. Phys. Lett. 1988, 53, 1705–1707. [Google Scholar] [CrossRef]
- Beuer, S.; Yanev, V.; Rommel, M.; Bauer, A.J.; Ryssel, H. SSRM characterisation of FIB induced damage in silicon. J. Phys. Conf. Ser. 2008, 100, 052007. [Google Scholar] [CrossRef] [Green Version]
- Rubanov, S. Damage layers in Si vs. ion dose during 30 keV FIB milling. Microsc. Microanal. 2009, 15, 358–359. [Google Scholar] [CrossRef] [Green Version]
- Spoldi, G.; Beuer, S.; Rommel, M.; Yanev, V.; Bauer, A.J.; Ryssel, H. Experimental observation of FIB induced lateral damage on silicon samples. Microelectron. Eng. 2009, 86, 548–551. [Google Scholar] [CrossRef]
- York, W.L.; Medlin, D.L.; Sugar, J.D.; Noell, P. A Method for plan-view FIB liftout of near surface defects with minimal beam-induced damage. Microsc. Microanal. 2018, 24, 842–843. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W. Characterization and Simulation of Electron/Ion Beam Damage on Soft Materials in FIB-SEM Microscopes. Ph.D. Thesis, Mcmaster University, Hamilton, ON, Canada, 2019. [Google Scholar]
- Idrissi, H.; Turner, S.; Mitsuhara, M.; Wang, B.; Hata, S.; Coulombier, M.; Raskin, J.-P.; Pardoen, T.; Tendeloo, G.V.; Schryvers, D. Point defect clusters and dislocations in FIB irradiated nanocrystalline aluminum films: An electron tomography and aberration-corrected high-resolution ADF-STEM study. Microsc. Microanal. 2011, 17, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Botman, A.; de Winter, M.; Mulders, J.J.L. Electron-beam-induced deposition of platinum at low landing energies. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2008, 26, 2460–2463. [Google Scholar] [CrossRef] [Green Version]
- Mehendale, S.; Mulders, J.J.L.; Trompenaars, P.H.F. A new sequential EBID process for the creation of pure Pt structures from MeCpPtMe3. Nanotechnology 2013, 24, 145303. [Google Scholar] [CrossRef] [PubMed]
- Langford, R.M.; Wang, T.-X.; Ozkaya, D. Reducing the resistivity of electron and ion beam assisted deposited Pt. Microelectron. Eng. 2007, 84, 784–788. [Google Scholar] [CrossRef]
- O’Regan, C.; Lee, A.; Holmes, J.D.; Petkov, N.; Trompenaars, P.; Mulders, H. Electrical properties of platinum interconnects deposited by electron beam induced deposition of the carbon-free precursor, Pt(PF3)4. J. Vac. Sci. Technol. B 2013, 31, 021807. [Google Scholar] [CrossRef]
- Jing-Yue, F.; Shi-Qiao, Q.; Xue-Ao, Z.; Dong-Qing, L.; Sheng-Li, C. Annealing effect of platinum-incorporated nanowires created by focused ion/electron-beam-induced deposition. Chin. Phys. B 2014, 23, 088111. [Google Scholar]
- Botman, A.; Mulders, J.J.L.; Weemaes, R.; Mentink, S. Purification of platinum and gold structures after electron-beam-induced deposition. Nanotechnology 2006, 17, 3779–3785. [Google Scholar] [CrossRef]
- Rotkina, L.; Oh, S.; Eckstein, J.N.; Rotkin, S.V. Logarithmic behavior of the conductivity of electron-beam deposited granular Pt/C nanowires. Phys. Rev. B 2005, 72, 233407. [Google Scholar] [CrossRef] [Green Version]
- Mulders, J.J.L.; Belova, L.M.; Riazanova, A. Electron beam induced deposition at elevated temperatures: Compositional changes and purity improvement. Nanotechnology 2010, 22, 055302. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.-M.; Xu, J.; Zhang, X.-Z.; Yu, D.-P. The relationship between quantum transport and microstructure evolution in carbon-sheathed Pt granular metal nanowires. Nanotechnology 2008, 19, 305402. [Google Scholar] [CrossRef] [PubMed]
- Frabboni, S.; Gazzadi, G.C.; Felisari, L.; Spessot, A. Fabrication by electron beam induced deposition and transmission electron microscopic characterization of sub-10-nm freestanding Pt nanowires. Appl. Phys. Lett. 2006, 88, 213116. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal—Amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehm, R. Thermocouples: Theory and properties. Appl. Mech. Rev. 1994, 45, B46. [Google Scholar]
- Walsh, A.; Kehoe, A.B.; Temple, D.J.; Watson, G.W.; Scanlon, D.O. PbO2: From semi-metal to transparent conducting oxide by defect chemistry control. Chem. Commun. 2013, 49, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Scardi, P.; Antonucci, P.L. XRD characterization of highly dispersed metal catalysts on carbon support. J. Mater. Res. 1993, 8, 1829–1835. [Google Scholar] [CrossRef]
- Leontyev, I.N.; Kuriganova, A.B.; Leontyev, N.G.; Hennet, L.; Rakhmatullin, A.; Smirnova, N.V.; Dmitriev, V. Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations. RSC Adv. 2014, 4, 35959–35965. [Google Scholar] [CrossRef]
- Klimenkov, M.; Nepijko, S.; Kuhlenbeck, H.; Bäumer, M.; Schlögl, R.; Freund, H.-J. The structure of Pt-aggregates on a supported thin aluminum oxide film in comparison with unsupported alumina: A transmission electron microscopy study. Surf. Sci. 1997, 391, 27–36. [Google Scholar] [CrossRef]
- Yu, P.; Pemberton, M.; Plasse, P. PtCo/C cathode catalyst for improved durability in PEMFCs. J. Power Sources 2005, 144, 11–20. [Google Scholar] [CrossRef]
- Salgado, J.R.C.; Quintana, J.J.; Calvillo, L.; Lázaro, M.J.; Cabot, P.L.; Esparbé, I.; Pastor, E. Carbon monoxide and methanol oxidation at platinum catalysts supported on ordered mesoporous carbon: The influence of functionalization of the support. Phys. Chem. Chem. Phys. 2008, 10, 6796–6806. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.H.; Wang, M.P. Size and shape dependent lattice parameters of metallic nanoparticles. J. Nanoparticle Res. 2005, 7, 51–57. [Google Scholar] [CrossRef]
Structure | Ef (eV) | IIId1 (Å) | IVd2 (Å) | Vq (e−) |
---|---|---|---|---|
pure | 0 | 2.77 | 3.93 | 0 |
I tetrahedron | 2.07 | 3.13 | - | 0.57 |
II octahedron | 2.14 | - | 4.11 | 0.82 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, C.; Qi, R.; Zheng, Y.; Cheng, Y.; Song, W.; Huang, R. The Relationships of Microscopic Evolution to Resistivity Variation of a FIB-Deposited Platinum Interconnector. Micromachines 2020, 11, 588. https://doi.org/10.3390/mi11060588
Zhong C, Qi R, Zheng Y, Cheng Y, Song W, Huang R. The Relationships of Microscopic Evolution to Resistivity Variation of a FIB-Deposited Platinum Interconnector. Micromachines. 2020; 11(6):588. https://doi.org/10.3390/mi11060588
Chicago/Turabian StyleZhong, Chaorong, Ruijuan Qi, Yonghui Zheng, Yan Cheng, Wenxiong Song, and Rong Huang. 2020. "The Relationships of Microscopic Evolution to Resistivity Variation of a FIB-Deposited Platinum Interconnector" Micromachines 11, no. 6: 588. https://doi.org/10.3390/mi11060588
APA StyleZhong, C., Qi, R., Zheng, Y., Cheng, Y., Song, W., & Huang, R. (2020). The Relationships of Microscopic Evolution to Resistivity Variation of a FIB-Deposited Platinum Interconnector. Micromachines, 11(6), 588. https://doi.org/10.3390/mi11060588