Mobility Models Based on Forward Current-Voltage Characteristics of P-type Pseudo-Vertical Diamond Schottky Barrier Diodes
Abstract
:1. Introduction
2. Numerical Methods
3. Simulation Results and Discussion
3.1. Constant Mobility Model
3.2. Analytic Mobility Model
3.3. Lombardi CVT Mobility Model
3.4. Empirical Mobility Model
3.5. Breakdown Voltage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Isberg, J.; Hammersberg, J.; Johansson, E.; Wikström, T.; Twitchen, D.J.; Whitehead, A.J.; Coe, S.E.; Scarsbrook, G.A. High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond. Science 2002, 297, 1670–1672. [Google Scholar] [CrossRef] [PubMed]
- Chicot, G.; Eon, D.; Rouger, N. Optimal drift region for diamond power devices. Diam. Relat. Mater. 2016, 69, 68–73. [Google Scholar] [CrossRef]
- Kasu, M. Diamond field-effect transistors for RF power electronics: Novel NO2 hole doping and low-temperature deposited Al2O3 passivation. Jpn. J. Appl. Phys. 2016, 56, 01AA01. [Google Scholar] [CrossRef]
- Hitchcock, C.; Chow, T.P. Degradation of forward current density with increasing blocking voltage in diamond Schottky-pn diodes. Diam. Relat. Mater. 2020, 104, 107736. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Z.; Wang, J.; Yi, W.; Wang, R.; Wang, K.; Wang, H. Performance Improved Vertical Diamond Schottky Barrier Diode with Fluorination-Termination Structure. IEEE Electron Device Lett. 2019, 40, 1229–1232. [Google Scholar] [CrossRef]
- Matsumoto, T.; Kato, H.; Oyama, K.; Makino, T.; Ogura, M.; Takeuchi, D.; Inokuma, T.; Tokuda, N.; Yamasaki, S. Inversion channel diamond metal-oxide-semiconductor with normally-off characteristics. Sci. Rep. 2016, 6, 31585. [Google Scholar] [CrossRef]
- Liu, J.; Teraji, T.; Da, B.; Ohsato, H.; Koide, Y. Effect of Annealing Temperature on Performances of Boron-Doped Diamond Metal–Semiconductor Field-Effect Transistors. IEEE Trans. Electron Devices 2020, 67, 1680–1685. [Google Scholar] [CrossRef]
- Ren, Z.; Lv, D.; Xu, J.; Zhang, J.; Zhang, J.; Su, K.; Zhang, C.; Hao, Y. High temperature (300 °C) ALD grown Al2O3 on hydrogen terminated diamond: Band offset and electrical properties of the MOSFETs. Appl. Phys. Lett. 2020, 116, 013503. [Google Scholar] [CrossRef]
- Hicks, M.-L.; Pakpour-Tabrizi, A.C.; Jackman, R.B. Polishing, preparation and patterning of diamond for device applications. Diam. Relat. Mater. 2019, 97, 107424. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.-F.; Zhang, M.; Wang, R.; Chen, G.; Chang, X.; Lin, F.; Wen, F.; Jia, K.; Wang, H.-X. An Enhancement-Mode Hydrogen-Terminated Diamond Field-Effect Transistor with Lanthanum Hexaboride Gate Material. IEEE Electron Device Lett. 2020, 41, 585–588. [Google Scholar] [CrossRef]
- Sun, C.; Hao, T.; Li, J.; Ye, H.; Gu, C.-Z. The design and performance of hydrogen-terminated diamond metal-oxide-semiconductor field-effect transistors with high k oxide HfO2. Micro Nano Eng. 2020, 6, 100046. [Google Scholar] [CrossRef]
- Koizumi, S.; Umezawa, H.; Pernot, J.; Suzuki, M. Power Electronics Device Applications of Diamond Semiconductors; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar]
- Thonke, K. The boron acceptor in diamond. Semicond. Sci. Technol. 2003, 18, S20–S26. [Google Scholar] [CrossRef]
- Shikata, S. Single crystal diamond wafers for high power electronics. Diam. Relat. Mater. 2016, 65, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, K.; Umezawa, H.; Tatsumi, N.; Ramanujam, K.; Shikata, S.-I. Fabrication of a field plate structure for diamond Schottky barrier diodes. Diam. Relat. Mater. 2009, 18, 292–295. [Google Scholar] [CrossRef]
- Kumaresan, R.; Umezawa, H.; Tatsumi, N.; Ikeda, K.; Shikata, S. Device processing, fabrication and analysis of diamond pseudo-vertical Schottky barrier diodes with low leak current and high blocking voltage. Diam. Relat. Mater. 2009, 18, 299–302. [Google Scholar] [CrossRef]
- Umezawa, H.; Tatsumi, N.; Kato, Y.; Shikata, S.-I. Leakage current analysis of diamond Schottky barrier diodes by defect imaging. Diam. Relat. Mater. 2013, 40, 56–59. [Google Scholar] [CrossRef]
- Dutta, M.; Koeck, F.; Li, W.; Nemanich, R.J.; Chowdhury, S. High Voltage Diodes in Diamond using (100)- and (111)- Substrates. IEEE Electron Device Lett. 2017, 38, 1. [Google Scholar] [CrossRef]
- Ding, H.; Isoird, K.; Schneider, H.; Koné, S.; Civrac, G. Basic parameters and models in simulation of CVD diamond devices. Diam. Relat. Mater. 2010, 19, 500–502. [Google Scholar] [CrossRef]
- Thion, F.; Isoird, K.; Planson, D.; Locatelli, M.-L.; Ding, H. Simulation and design of junction termination structures for diamond Schottky diodes. Diam. Relat. Mater. 2011, 20, 729–732. [Google Scholar] [CrossRef] [Green Version]
- Arbess, H.; Isoird, K.; Zerarka, M.; Schneider, H.; Locatelli, M.-L.; Planson, D. High termination efficiency using polyimide trench for high voltage diamond Schottky diode. Diam. Relat. Mater. 2015, 58, 149–154. [Google Scholar] [CrossRef]
- Maréchal, A.; Rouger, N.; Crébier, J.-C.; Pernot, J.; Koizumi, S.; Teraji, T.; Gheeraert, E. Model implementation towards the predicition of J(V) characteristics in diamond bipolar device simulations. Diam. Relat. Mater. 2014, 43, 34–42. [Google Scholar] [CrossRef]
- Hathwar, R.; Dutta, M.; Koeck, F.; Nemanich, R.J.; Chowdhury, S.; Goodnick, S.M. Temperature dependent simulation of diamond depleted Schottky PIN diodes. J. Appl. Phys. 2016, 119, 225703. [Google Scholar] [CrossRef]
- Chou, J.-P.; Retzker, A.; Gali, A. Nitrogen-Terminated Diamond (111) Surface for Room-Temperature Quantum Sensing and Simulation. Nano Lett. 2017, 17, 2294–2298. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-W.; Chang, H.N.; Ha, M.-W. Numerical simulation of p-type diamond Schottky barrier diodes for high breakdown voltage. Jpn. J. Appl. Phys. 2017, 56, 06GE09. [Google Scholar] [CrossRef] [Green Version]
- Caughey, D.; Thomas, R. Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 1967, 55, 2192–2193. [Google Scholar] [CrossRef]
- Shaw, J.G.; Hack, M. An analytic model for calculating trapped charge in amorphous silicon. J. Appl. Phys. 1988, 64, 4562–4566. [Google Scholar] [CrossRef]
- Lombardi, C.; Manzini, S.; Saporito, A.; Vanzi, M. A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Des. Integr. Circuits Syst. 1988, 7, 1164–1171. [Google Scholar] [CrossRef]
- Volpe, P.-N.; Pernot, J.; Muret, P.; Omnès, F. High hole mobility in boron doped diamond for power device applications. Appl. Phys. Lett. 2009, 94, 92102. [Google Scholar] [CrossRef]
- Silvaco International. Atlas User’s Manual; Silvaco International: Santa Clara, CA, USA, 2009. [Google Scholar]
- Miyata, K.; Nishimura, K.; Kobashi, K. Device simulation of submicrometer gate p+-i-p+ diamond transistors. IEEE Trans. Electron Devices 1995, 42, 2010–2014. [Google Scholar] [CrossRef]
- Pernot, J.; Volpe, P.N.; Omnès, F.; Muret, P.; Mortet, V.; Haenen, K.; Teraji, T. Hall hole mobility in boron-doped homoepitaxial diamond. Phys. Rev. B 2010, 81, 205203. [Google Scholar] [CrossRef]
- Rashid, S.J.; Tajani, A.; Twitchen, D.J.; Coulbeck, L.; Udrea, F.; Butler, T.; Rupesinghe, N.L.; Brezeanu, M.; Isberg, J.; Garraway, A.; et al. Numerical Parameterization of Chemical-Vapor-Deposited (CVD) Single-Crystal Diamond for Device Simulation and Analysis. IEEE Trans. Electron Devices 2008, 55, 2744–2756. [Google Scholar] [CrossRef] [Green Version]
- Selberherr, S. Analysis and Simulation of Semiconductor Devices; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Van Overstraeten, R.; De Man, H. Measurement of the ionization rates in diffused silicon p-n junctions. Solid State Electron. 1970, 13, 583–608. [Google Scholar] [CrossRef]
- Chynoweth, A.G. Ionization Rates for Electrons and Holes in Silicon. Phys. Rev. 1958, 109, 1537–1540. [Google Scholar] [CrossRef]
μconst (cm2/Vs) | Hole Mobility (cm2/Vs) | Forward Voltage Drop (V) | Specific on-Resistance (mΩ∙cm2) |
---|---|---|---|
1000 | 1000 | 2.47 | 14.1 |
2000 | 2000 | 1.76 | 7.0 |
3000 | 3000 | 1.52 | 4.6 |
4000 | 4000 | 1.40 | 3.4 |
Mobility Model | Temperature (K) | Built-in Potential (V) | Hole Mobility (cm2/Vs) | Forward Voltage Drop (V) | Specific on-Resistance (mΩ∙cm2) |
---|---|---|---|---|---|
Constant | 200 | 1.2 | 3670 | 1.57 | 3.8 |
300 | 1.1 | 2000 | 1.76 | 7.0 | |
400 | 1.0 | 1300 | 2.01 | 10.9 | |
500 | 0.8 | 930 | 2.30 | 14.8 | |
Analytic | 200 | 1.2 | 720 | 3.16 | 19.3 |
300 | 1.1 | 790 | 2.86 | 17.5 | |
400 | 1.0 | 800 | 2.69 | 17.4 | |
500 | 0.8 | 790 | 2.57 | 17.5 | |
Lombardi CVT | 200 | 1.2 | - | 2.84 | 17.2 |
300 | 1.1 | - | 5.17 | 40.8 | |
400 | 1.0 | - | 9.11 | 82.0 | |
500 | 0.8 | - | 15.49 | 145.8 | |
Empirical | 300 | 1.1 | 1990 | 1.77 | 6.8 |
400 | 1.0 | 820 | 2.65 | 16.8 | |
500 | 0.8 | 410 | 4.20 | 33.7 | |
Experimental [15] | 300 | 2.1 | - | - | 18.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, M.-W.; Seok, O.; Lee, H.; Lee, H.H. Mobility Models Based on Forward Current-Voltage Characteristics of P-type Pseudo-Vertical Diamond Schottky Barrier Diodes. Micromachines 2020, 11, 598. https://doi.org/10.3390/mi11060598
Ha M-W, Seok O, Lee H, Lee HH. Mobility Models Based on Forward Current-Voltage Characteristics of P-type Pseudo-Vertical Diamond Schottky Barrier Diodes. Micromachines. 2020; 11(6):598. https://doi.org/10.3390/mi11060598
Chicago/Turabian StyleHa, Min-Woo, Ogyun Seok, Hojun Lee, and Hyun Ho Lee. 2020. "Mobility Models Based on Forward Current-Voltage Characteristics of P-type Pseudo-Vertical Diamond Schottky Barrier Diodes" Micromachines 11, no. 6: 598. https://doi.org/10.3390/mi11060598
APA StyleHa, M. -W., Seok, O., Lee, H., & Lee, H. H. (2020). Mobility Models Based on Forward Current-Voltage Characteristics of P-type Pseudo-Vertical Diamond Schottky Barrier Diodes. Micromachines, 11(6), 598. https://doi.org/10.3390/mi11060598