Performance Comparison of SOI-Based Temperature Sensors for Room-Temperature Terahertz Antenna-Coupled Bolometers: MOSFET, PN Junction Diode and Resistor
Abstract
:1. Introduction
2. Structure of Antenna-Coupled Bolometers
3. Estimation Procedure of Performance Metrics
3.1. Estimation Procedure of Rv
3.2. Estimation Procedure of Noise Equivalent Power (NEP) and Thermal Response Time (τ)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Conversion Procedure of the Output Noise Voltages
References
- Kukutsu, N.; Kado, Y. Overview of millimeter and terahertz wave application research. NTT Tech. Rev. 2009, 7, 1–6. [Google Scholar]
- Zhu, B.; Chen, Y.; Deng, K.; Hu, W.; Yao, Z.S. Terahertz Science and Technology and Applications. PIERS Proc. 2009, 2, 1166–1170. [Google Scholar]
- Rogalski, A. Infrared thermal detectors versus photon detectors: I. Pixel performance. Mater. Sci. Mater. Prop. Infrared Optoelectron. 1997, 3182, 14–25. [Google Scholar] [CrossRef]
- Li, H.; Wan, W.J.; Tan, Z.Y.; Fu, Z.L.; Wang, H.X.; Zhou, T.; Li, Z.P.; Wang, C.; Guo, X.G.; Cao, J.C. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors. Sci. Rep. 2017, 7, 3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, T.; Fujimura, N.; Crespi, L.; Kodera, T.; Kawano, Y. Terahertz detection with an antenna-coupled highly-doped silicon quantum dot. Sci. Rep. 2019, 9, 18574. [Google Scholar] [CrossRef]
- Palaferri, D.; Todorov, Y.; Chen, Y.N.; Madeo, J.; Vasanelli, A.; Li, L.H.; Davies, A.G.; Linfield, E.H.; Sirtori, C. Patch antenna terahertz photodetectors. Appl. Phys. Lett. 2015, 106, 161102. [Google Scholar] [CrossRef]
- Zhang, Y.; Hosono, S.; Nagai, N.; Song, S.-H.; Hirakawa, K. Fast and sensitive bolometric terahertz detection at room temperature through thermomechanical transduction. J. Appl. Phys. 2019, 125, 151602. [Google Scholar] [CrossRef]
- Kreisler, A.J.M. Submillimeter Wave Applications of Submicron Schottky Diodes. Far-Infrared Sci. Technol. 1986, 666, 51–63. [Google Scholar] [CrossRef]
- Crowe, T.W.; Mattauch, R.J.; Weikle, R.M.; Bhapkar, U.V. Terahertz Gaas Devices and Circuits for Heterodyne Receiver Applications. Int. J. High. Speed Electron. Syst. 1995, 6, 125–161. [Google Scholar] [CrossRef]
- Han, R.; Zhang, Y.; Kim, Y.; Kim, D.Y.; Shichijo, H.; Afshari, E.; Kenneth, K.O. Active Terahertz Imaging Using Schottky Diodes in CMOS: Array and 860-GHz Pixel. IEEE J. Solid-State Circuits 2013, 48, 2296–2308. [Google Scholar] [CrossRef]
- Knap, W.; Teppe, F.; Meziani, Y.; Dyakonova, N.; Lusakowski, J.; Boeuf, F.; Skotnicki, T.; Maude, D.; Rumyantsev, S.; Shur, M.S. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl. Phys. Lett. 2004, 85, 675–677. [Google Scholar] [CrossRef] [Green Version]
- Tauk, R.; Teppe, F.; Boubanga, S.; Coquillat, D.; Knap, W.; Meziani, Y.M.; Gallon, C.; Boeuf, F.; Skotnicki, T.; Fenouillet-Beranger, C.; et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Appl. Phys. Lett. 2006, 89, 253511. [Google Scholar] [CrossRef] [Green Version]
- Golenkov, A.G.; Sizov, F.F. Performance limits of terahertz zero biased rectifying detectors for direct detection. Semicond. Phys. Quantum Electron. Optoelectron. 2016, 19, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Földesy, P.; Gergelyi, D.; Füzy, C.; Károlyi, G. Test and configuration architecture of a sub-THz CMOS detector array. In Proceedings of the 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Tallinn, Estonia, 15–20 April 2012; pp. 101–104. [Google Scholar] [CrossRef]
- Bauer, M.; Boppel, S.; Lisauskas, A.; Krozer, V.; Roskos, H.G. Real-time CMOS terahertz camera employing plane-to-plane imaging with a focal-plane array of field-effect transistors. In Proceedings of the 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany, 1–6 September 2013; pp. 2–3. [Google Scholar] [CrossRef]
- Perenzoni, D.; Perenzoni, M.; Gonzo, L.; Capobianco, A.D.; Sacchetto, F. Analysis and design of a CMOS-based terahertz sensor and readout. Opt. Sens. Detect. 2010, 7726, 772618. [Google Scholar] [CrossRef]
- Schuster, F.; Coquillat, D.; Videlier, H.; Sakowicz, M.; Teppe, F.; Dussopt, L.; Giffard, B.; Skotnicki, T.; Knap, W. Broadband terahertz imaging with highly sensitive silicon CMOS detectors. Opt. Express 2011, 19, 7827–7832. [Google Scholar] [CrossRef] [PubMed]
- Lisauskas, A.; Boppel, S.; Roskos, H.G.; Matukas, J.; Palenskis, V.; Minkevičius, L.; Valušis, G.; Haring Bolivar, P. Terahertz responsivity enhancement and low-frequency noise study in silicon CMOS detectors using a drain current bias. In Proceedings of the 21st International Conference on Noise and Fluctuations, Toronto, ON, Canada, 12–16 June 2011; pp. 297–300. [Google Scholar] [CrossRef]
- Nemirovsky, Y.; Svetlitza, A.; Brouk, I.; Stolyarova, S. Nanometric CMOS-SOI-NEMS transistor for uncooled THz sensing. IEEE Trans. Electron. Devices 2013, 60, 1575–1583. [Google Scholar] [CrossRef]
- Kruse, P.W. Uncooled Thermal Imaging. Arrays, Systems, and Applications; SPIE: Bellingham, WA, USA, 2001. [Google Scholar]
- Garn, L.E. Fundamental noise limits of thermal detectors. J. Appl. Phys. 1984, 55, 1243–1253. [Google Scholar] [CrossRef]
- Neikirk, D.P.; Lam, W.W.; Rutledge, D.B. Far-infrared microbolometer detectors. Int. J. Infrared Millim. Waves 1984, 5, 245–278. [Google Scholar] [CrossRef]
- Chen, S.; Ma, H.; Xiang, S.; Yi, X. Fabrication and performance of microbolometer arrays based on nanostructured vanadium oxide thin films. Smart Mater. Struct. 2007, 16, 696–700. [Google Scholar] [CrossRef]
- Chen, C.; Yi, X.; Zhao, X.; Xiong, B. Characterizations of VO2-based uncooled microbolometer linear array. Sensors Actuators A Phys. 2001, 90, 212–214. [Google Scholar] [CrossRef]
- Chen, C.; Yi, X.; Zhang, J.; Zhao, X. Linear uncooled microbolometer array based on VOx thin films. Infrared Phys. Technol. 2001, 42, 87–90. [Google Scholar] [CrossRef]
- Wang, H.; Yi, X.; Huang, G.; Xiao, J.; Li, X.; Chen, S. IR microbolometer with self-supporting structure operating at room temperature. Infrared Phys. Technol. 2004, 45, 53–57. [Google Scholar] [CrossRef]
- Bhan, R.K.; Saxena, R.S.; Jalwania, C.R.; Lomash, S.K. Uncooled infrared microbolometer arrays and their characterisation techniques. Def. Sci. J. 2009, 59, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Yoon, J.B.; Yoon, E.; Ju, S.B.; Yong, Y.J.; Lee, W.; Kim, S.G. A high fill-factor infrared bolometer using micromachinedmultilevelelectrothermal structures. IEEE Trans. Electron. Devices 1999, 46, 1489–1491. [Google Scholar] [CrossRef]
- Banerjee, A.; Satoh, H.; Sharma, Y.; Hiromoto, N.; Inokawa, H. Characterization of platinum and titanium thermistors for terahertz antenna-coupled bolometer applications. Sens. Actuators A Phys. 2018, 273, 49–57. [Google Scholar] [CrossRef]
- Tezcan, D.S.; Eminoglu, S.; Akin, T. A low-cost uncooled infrared microbolometer detector in standard CMOS technology. IEEE Trans. Electron. Devices 2003, 50, 494–502. [Google Scholar] [CrossRef]
- Niklaus, F.; Kälvesten, E.; Stemme, G. Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays. J. Micromech. Microeng. 2001, 11, 509–513. [Google Scholar] [CrossRef]
- Niklaus, F.; Pejnefors, J.; Dainese, M.; Haggblad, M.; Hellstrom, P.E.; Wallgren, U.J.; Stemme, G. Characterization of transfer-bonded silicon bolometer arrays. Proc. SPIE 2004, 5406, 521–530. [Google Scholar] [CrossRef]
- Simoens, F.; Meilhan, J. Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130111. [Google Scholar] [CrossRef] [Green Version]
- Ueno, M.; Kosasayama, Y.; Sugino, T.; Nakaki, Y.; Fujii, Y.; Inoue, H.; Kama, K.; Seto, T.; Takeda, M.; Kimata, M. 640 × 480 pixel uncooled infrared FPA with SOI diode detectors. Proc. SPIE 2005, 5783, 566–577. [Google Scholar] [CrossRef]
- Ishikawa, T.; Ueno, M.; Nakaki, Y.; Endo, K.; Ohta, Y.; Nakanishi, J.; Kosasayama, Y.; Yagi, H.; Sone, T.; Kimata, M. Performance of 320 × 240 uncooled IRFPA with SOI diode detectors. Proc. SPIE 2000, 4130, 152–159. [Google Scholar] [CrossRef]
- Kimata, M.; Ueno, M.; Takeda, M.; Seto, T. SOI diode uncooled infrared focal plane arrays. Proc. SPIE 2006, 6127, 61270X. [Google Scholar] [CrossRef]
- Olgun, Z.; Akar, O.; Kulah, H.; Akin, T. An integrated thermopile structure with high responsivity using any standard CMOS process. In Proceedings of the International Solid State Sensors and Actuators Conference (Transducers’97), Chicago, IL, USA, 19 June 1997; pp. 1263–1266. [Google Scholar] [CrossRef]
- Gitelman, L.; Stolyarova, S.; Bar-Lev, S.; Gutman, Z.; Ochana, Y.; Nemirovsky, Y. CMOS-SOI-MEMS transistor for uncooled IR imaging. IEEE Trans. Electron. Devices 2009, 56, 1935–1942. [Google Scholar] [CrossRef]
- Morf, T.; Klein, B.; Despont, M.; Drechsler, U.; Kull, L.; Corcos, D.; Elad, D.; Kaminski, N.; Pfeiffer, U.R.; Al Hadi, R.; et al. Wide bandwidth room-temperature THz imaging array based on antenna-coupled MOSFET bolometer. Sensors Actuators A Phys. 2014, 215, 96–104. [Google Scholar] [CrossRef]
- Hiromoto, N.; Tiwari, A.; Aoki, M.; Satoh, H.; Takeda, M.; Inokawa, H. Room-temperature THz antenna-coupled microbolometer with a Joule-heating resistor at the center of a half-wave antenna. In Proceedings of the 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Tucson, AZ, USA, 14–19 September 2014; pp. 1–2. [Google Scholar] [CrossRef]
- Kruse, P.W. A comparison of the limits to the performance of thermal and photon detector imaging arrays. Infrared Phys. Technol. 1995, 36, 869–882. [Google Scholar] [CrossRef]
- Rogalski, A. New trends in infrared and terahertz detectors. In Proceedings of the Conference on Optoelectronic and Microelectronic Materials & Devices, Perth, Australia, 14–17 December 2014; pp. 218–220. [Google Scholar] [CrossRef]
- Kominami, M.; Pozar, D.M.; Schaubert, D.H. Dipole and slot elements and arrays on semi-infinite substrate. IEEE Trans. Antennas Propag. 1985, 33, 600–607. [Google Scholar] [CrossRef]
- Banerjee, A.; Satoh, H.; Tiwari, A.; Apriono, C.; Rahardjo, E.T.; Hiromoto, N.; Inokawa, H. Width dependence of platinum and titanium thermistor characteristics for application in room-temperature antenna-coupled terahertz microbolometer. Jpn. J. Appl. Phys. 2017, 56, 04CC07. [Google Scholar] [CrossRef]
- Tiwari, A.; Satoh, H.; Aoki, M.; Takeda, M.; Hiromoto, N.; Inokawa, H. THz Antenna-Coupled Microbolometer with 0.1-µm-wide Titanium Thermistor. Intern. J. ChemTech Res. 2015, 7, 1019–1026. [Google Scholar]
- Datskos, P.G.; Lavrik, N.V. Detector—figure of merits. In Encyclopedia of Optical Engineering; Driggers, R.G., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2003; p. 349. [Google Scholar]
- Tiwari, A.; Satoh, H.; Aoki, M.; Takeda, M.; Hiromoto, N.; Inokawa, H. Fabrication and analytical modeling of integrated heater and thermistor for antenna-coupled bolometers. Sens. Actuators A Phys. 2015, 222, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Asheghi, M. Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J. Appl. Phys. 2005, 98, 123523. [Google Scholar] [CrossRef]
- van Herwaarde, S. Physical principles of thermal sensors. Sens. Mater. 1996, 8, 373–387. [Google Scholar]
- National Astronomical Observatory of Japan (Ed.) Chronological Scientific Tables; Maruzen: Tokyo, Japan, 2015. [Google Scholar]
- Tiwari, A.; Satoh, H.; Aoki, M.; Takeda, M.; Hiromoto, N.; Inokawa, H. Analysis of Microbolometer Characteristics for Antenna-Coupled THz Detectors. Asian, J. Chem. 2013, 25, S358–S360. [Google Scholar]
- Kraus, J.D.; Marhefka, R.J. Antennas for All Applications, 3rd ed.; McGraw-Hill Series in Electrical Engineering; McGraw-Hill: New York, NY, USA, 2002; Chapter 2; p. 35. [Google Scholar]
- Harris, F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Pan, S.; Luo, Y.; Shalmany, S.H.; Makinwa, K.A.A. A Resistor-Based Temperature Sensor With a 0.13 pJ·K2 Resolution FoM. IEEE J. Solid-State Circuits 2018, 53, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Boukai, A.I.; Bunimovich, Y.; Kheli, J.T.; Yu, J.K.; Goddard, W.A.; Heath, J.R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171. [Google Scholar] [CrossRef]
Parameter | Fabricated Device Dimension (µm) | Assumed Device Dimension (µm) |
---|---|---|
Heater length of metal-oxide-semiconductor field-effect transistor (MOSFET) and diode | 15 | 15 |
Heater width (gate length) of MOSFET and diode | 1 | 1 |
Channel width of MOSFET | 5 | 5 |
Width of pn-junction diode | 50 | 5 |
Thermistor length of resistive bolometer | 100 | 15 |
Thermistor width of resistive bolometer | 1 | 0.6 |
Heater length of resistive bolometer | 100 | 15 |
Heater width of resistive bolometer | 1 | 1 |
Antenna width (Want) | × | 5.2 |
Material | Measured Electrical and Thermal Parameters | Calculated Electrical and Thermal Parameters | ||||
---|---|---|---|---|---|---|
Electrical Resistance (Ω) | Thermal Conductivity k (W/mK) | Temperature Coefficient of Resistance (TCR) (K−1) | Electrical Resistance re (Ω/m) | Thermal Resistance rt (K/Wm) | Thermal Capacitance (J/Km) | |
Polysilicon (Heater) // SiO2 | 8.36 × 102 | 21.6 (poly Si) 1.38 (SiO2) | 1.11 × 10−3 | 5.57 × 107 | 2.66 × 1011 | 1.31 × 10−6 |
n+ single crystalline silicon | 2.63 × 103 | 53.2 | 1.57 × 10−3 | 1.75 × 108 | 3.13 × 1011 | 9.96 × 10−5 |
p+ single crystalline silicon | 1.02 × 104 | 53.2 | 9.83 × 10−4 | 6.83 × 108 | 3.13 × 1011 | 9.96 × 10−5 |
Polysilicon (Thermistor) | 1.44 × 103 | 21.6 | 1.15 × 10−3 | 9.62 × 107 | 5.92 × 1011 | 1.29 × 10−7 |
Bolometers | T1−To (K) | TCR (K−1) | (T1−To)α (%) |
---|---|---|---|
N-channel MOSFET | 2.86 | −6.18 × 10−2 | −17.6 |
P-channel MOSFET | 2.86 | −1.71 × 10−2 | −4.9 |
Diode (without body doping) | 2.53 | −1.22 × 10−3 | −0.31 |
Diode (with p-body doping) | 2.53 | −1.19 × 10−3 | −0.30 |
Resistive (n+ single crystalline Si) | 4.74 × 10−2 | 1.57 × 10−3 | ~0 |
Resistive (p+ single crystalline Si) | 1.85 × 10−1 | 9.83 × 10−4 | ~0 |
Resistive (polycrystalline Si) | 3.32 × 10−2 | 1.15 × 10−3 | ~0 |
Bolometers | Voltage Noise at 10 Hz (V/Hz1/2) | Responsivity Rv (V/W) | NEP (W/Hz1/2) | Response Time τ (μs) | NETD (K/Hz1/2) |
---|---|---|---|---|---|
N-channel MOSFET | 1.27 × 10−6 | 5.16 k | 2.45 × 10−10 | 13.8 | 2.88 × 10−5 |
P-channel MOSFET | 2.79 × 10−7 | 1.64 k | 1.70 × 10−10 | 15.9 | 2.31 × 10−5 |
Diode (without body doping) | 2.08 × 10−7 | 109 | 1.99 × 10−9 | 16.7 | 2.83 × 10−4 |
Diode (with p- doping) | 2.27 × 10−7 | 106 | 2.15 × 10−9 | 16.7 | 3.05 × 10−4 |
Resistive (n+ single-Si) | 2.70 × 10−8 | 5.27 | 5.12 × 10−9 | 2.34 | 9.23 × 10−4 |
Resistive (p+ single-Si) | 7.72 × 10−8 | 12.8 | 6.01 × 10−9 | 2.34 | 1.07 × 10−3 |
Resistive (n+ poly-Si) | 1.78 × 10−8 | 2.69 | 6.59 × 10−9 | 3.07 | 1.52 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elamaran, D.; Suzuki, Y.; Satoh, H.; Banerjee, A.; Hiromoto, N.; Inokawa, H. Performance Comparison of SOI-Based Temperature Sensors for Room-Temperature Terahertz Antenna-Coupled Bolometers: MOSFET, PN Junction Diode and Resistor. Micromachines 2020, 11, 718. https://doi.org/10.3390/mi11080718
Elamaran D, Suzuki Y, Satoh H, Banerjee A, Hiromoto N, Inokawa H. Performance Comparison of SOI-Based Temperature Sensors for Room-Temperature Terahertz Antenna-Coupled Bolometers: MOSFET, PN Junction Diode and Resistor. Micromachines. 2020; 11(8):718. https://doi.org/10.3390/mi11080718
Chicago/Turabian StyleElamaran, Durgadevi, Yuya Suzuki, Hiroaki Satoh, Amit Banerjee, Norihisa Hiromoto, and Hiroshi Inokawa. 2020. "Performance Comparison of SOI-Based Temperature Sensors for Room-Temperature Terahertz Antenna-Coupled Bolometers: MOSFET, PN Junction Diode and Resistor" Micromachines 11, no. 8: 718. https://doi.org/10.3390/mi11080718
APA StyleElamaran, D., Suzuki, Y., Satoh, H., Banerjee, A., Hiromoto, N., & Inokawa, H. (2020). Performance Comparison of SOI-Based Temperature Sensors for Room-Temperature Terahertz Antenna-Coupled Bolometers: MOSFET, PN Junction Diode and Resistor. Micromachines, 11(8), 718. https://doi.org/10.3390/mi11080718