Camphor-Based CVD Bilayer Graphene/Si Heterostructures for Self-Powered and Broadband Photodetection
Abstract
:1. Introduction
2. Device Fabrication and Methods
3. Measurement Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Monroy, E.; Omnes, F.; Calle, F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2003, 18, 33–51. [Google Scholar] [CrossRef]
- Tsai, D.-S.; Lin, C.-A.; Lien, W.-C.; Chang, H.-C.; Wang, Y.-L.; He, J.-H. Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano 2011, 5, 7748–7753. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.-C.; Tsai, D.-S.; Ravagger, P.; Ke, J.-J.; Tsai, M.-L.; Lien, D.-H.; Huang, C.-Y.; Horng, R.-H.; He, J.-H. See-through Ga2O3 solar-blind photodetectors for use in harsh environments. IEEE J. Sel. Top. Quant. Electron. 2014, 20, 112–117. [Google Scholar]
- Zhang, Y.; Ji, T.; Zhang, W.; Guan, G.; Ren, Q.; Xu, K.; Huang, X.; Zou, R.; Hu, J. A self-powered broadband photodetector based on an n-Si (111)/p-NiO heterojunction with high photosensitivity and enhanced external quantum efficiency. J. Mater. Chem. C 2017, 5, 12520–12528. [Google Scholar] [CrossRef]
- Thahe, A.A.; Bakhtiar, H.; Bidin, N.; Hassan, Z.; Qaeed, M.A.; Ramizy, A.; Talib, Z.A.; Ahmed, N.M.; Omar, K.; Alqaraghuli, H.; et al. High-performance nanoporous silicon-based photodetectors. Optik 2018, 168, 424–431. [Google Scholar] [CrossRef]
- Virot, L.; Benedikovic, D.; Szelag, B.; Alonso-Ramos, C.; Karakus, B.; Hartmann, J.-M.; Roux, X.L.; Crozat, P.; Cassan, E.; Marris-Morini, D.; et al. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction. Opt. Express 2017, 25, 19487–19496. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, P.E.; John, J.; Duboz, J.Y.; Hellings, G.; Lorenz, A.; Madrid, J.G.R.; Sturdevant, C.; Cheng, K.; Leys, M.; Derluyn, J.; et al. Backside-illuminated GaN-on-Si Schottky photodiodes for UV radiation detection. IEEE Electron. Dev. Lett. 2009, 30, 1308–1310. [Google Scholar] [CrossRef]
- Riazimehr, S.; Kataria, S.; Gonzalez-Medina, J.M.; Wagner, S.; Shaygan, M.; Suckow, S.; Ruiz, F.G.; Engstrom, O.; Godoy, A.; Lemme, M.C. High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by interdigitating Schottky and gated regions. ACS Photonics 2019, 6, 107–115. [Google Scholar] [CrossRef]
- Wen, F.; Wang, H.; He, T.; Shi, Q.; Sun, Z.; Zhu, M.; Zhang, Z.; Cao, Z.; Dai, Y.; Zhang, T.; et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266. [Google Scholar] [CrossRef]
- Dong, B.; Yang, Y.; Shi, Q.; Xu, S.; Sun, Z.; Zhu, S.; Zhang, Z.; Kwong, D.-L.; Zhou, G.; Ang, K.-W.; et al. Wearable triboelectric−human−machine interface (THMI) using robust nanophotonic readout. ACS Nano 2020, 14, 8915–8930. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, S.; Seo, M.; Lee, S.; Cho, H.; Meyyappan, M.; Baek, C.-K. Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes. Nat. Electron. 2019, 2, 572–579. [Google Scholar] [CrossRef]
- Shi, L.; Nihtianov, S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens. J. 2012, 12, 2453–2459. [Google Scholar] [CrossRef]
- Xie, C.; Lu, X.T.; Tong, X.W.; Zhang, Z.X.; Liang, F.X.; Liang, L.; Luo, L.B.; Wu, Y.C. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater. 2019, 28, 1806006. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Goykhman, I.; Sassi, U.; Desiatov, B.; Mazurski, N.; Milana, S.; Fazio, D.; Eiden, A.; Khurgin, J.; Shappir, J.; Levy, U.; et al. On-chip integrated, silicon–graphene plasmonic schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 2016, 16, 3005–3013. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Harley-Trochimczyk, A.; Long, H.; Chan, L.; Pham, T.; Hu, M.; Qin, Y.; Zettl, A.; Carraro, C.; Worsley, M.A.; et al. Conductometric gas sensing behavior of WS2 aerogel. FlatChem 2017, 5, 1–8. [Google Scholar] [CrossRef]
- Ogawa, S.; Shimatani, M.; Fukushima, S.; Okuda, S.; Kanai, Y.; Ono, T.; Matsumoto, K. Broadband photoresponse of graphene photodetector from visible to long-wavelength infrared wavelengths. Opt. Eng. 2019, 58, 057106. [Google Scholar]
- Savchak, M.; Borodinov, N.; Burtovyy, R.; Anayee, M.; Hu, K.; Ma, R.; Grant, A.; Li, H.; Cutshall, D.B.; Wen, Y.; et al. Highly conductive and transparent reduced graphene oxide nanoscale films via thermal conversion of polymer-encapsulated graphene oxide sheets. ACS Appl. Mater. Interfaces 2018, 10, 3975–3985. [Google Scholar] [CrossRef]
- Ma, Y.; Zhi, L. Graphene-based transparent conductive films: Material systems, preparation and applications. Small Methods 2019, 3, 1800199. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Xu, Y.; Guo, H.; Shehzad, K.; Ali, A.; Liu, Y.; Yang, J.; Dai, D.; Lin, C.-T.; Liwei, L.; et al. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: Breaking the limit of silicon? NPJ 2D Mater. Appl. 2017, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Amirmazlaghani, M.; Raissi, F.; Habibpour, O.; Vukusic, J.; Stake, J. Graphene-Si schottky IR detector. IEEE J. Quant. Electron. 2013, 49, 2589. [Google Scholar] [CrossRef]
- Kim, J.; Joo, S.S.; Lee, K.W.; Kim, J.H.; Shin, D.H.; Kim, S.; Choi, S.-H. Near-ultraviolet-sensitive graphene/porous silicon photodetectors. ACS Appl. Mater. Interfaces 2014, 6, 20880–20886. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.-B.; Zeng, L.-H.; Xie, C.; Yu, Y.-Q.; Liang, F.-X.; Wu, C.-Y.; Wang, L.; Hu, J.-G. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci. Rep. 2014, 4, 3914. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Yan, Y.; Li, K.; Khan, A.; Zhang, H.; Pi, X.; Yu, X.; Yang, D. High and fast response of a graphene–silicon photodetector coupled with 2D fractal platinum nanoparticles. Adv. Opt. Mater. 2017, 6, 1700793. [Google Scholar] [CrossRef]
- Shin, D.H.; Choi, S.-H. Graphene-based semiconductor heterostructures for photodetectors. Micromachines 2018, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y.P.; Pei, S.-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Khan, A.; Islam, S.M.; Ahmed, S.; Kumar, R.R.; Habib, M.R.; Huang, K.; Hu, M.; Yu, X.; Yang, D. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv Sci. 2018, 5, 1800050. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.-J.; Seo, H.-K.; Ahn, S.; Lee, T.-W. Value-added recycling of inexpensive carbon sources to graphene and carbon nanotubes. Adv. Sustain. Syst. 2019, 3, 1800016. [Google Scholar] [CrossRef]
- Nikolay, V.; Balashov, N.V.; Davis, K.J.; Miles, N.L.; Lauvaux, T.; Richardson, S.J.; Barkley, Z.R.; Bonin, T.A. Background heterogeneity and other uncertainties in estimating urban methane flux: Results from the Indianapolis Flux Experiment (INFLUX). Atmos. Chem. Phys. 2020, 20, 4545–4559. [Google Scholar]
- Kalita, G.; Sharma, S.; Wakita, K.; Umeno, M.; Hayashi, Y.; Tanemura, H. Synthesis of graphene by surface wave plasma chemical vapor deposition from camphor. Phys. Status Solidi A 2012, 209, 2510–2513. [Google Scholar] [CrossRef]
- Somani, P.R.; Somani, P.S.; Umeno, M. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59. [Google Scholar] [CrossRef]
- Ravani, F.; Papagelis, K.; Dracopoulos, V.; Parthenios, J.; Dassios, K.G.; Siokou, A.; Galiotis, C. Graphene production by dissociation of camphor molecules on nickel substrate. Thin Solid Films 2013, 527, 31–37. [Google Scholar] [CrossRef]
- Chaliyawala, H.A.; Rajaram, N.; Patel, R.; Ray, A.; Mukhopadhyay, I. Controlled island formation of large-area graphene sheets by atmospheric chemical vapor deposition: Role of natural camphor. ACS Omega 2019, 4, 8758–8766. [Google Scholar] [CrossRef]
- Chen, W.; Gui, X.; Yang, L.; Zhu, H.; Tang, Z. Wrinkling of two-dimensional materials: Methods, properties and applications. Nanoscale Horiz. 2019, 4, 291–320. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.; Kim, S.; Chen, X.; Einarsson, E.; Wang, M.; Song, Y.; Wang, H.; Chiashi, S.; Xiang, R.; Maruyama, S. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene. ACS Nano 2014, 8, 11631–11638. [Google Scholar] [CrossRef]
- Xu, X.; Lin, C.; Fu, R.; Wang, S.; Pan, R.; Chen, G.; Shen, Q.; Liu, C.; Guo, X.; Wang, Y.; et al. A simple method to tune graphene growth between monolayer and bilayer. AIP Adv. 2016, 6, 025026. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, D.; Wei, D.; Song, X.; Wei, D.; Wee, A.T.S. Controllable synthesis of graphene by plasma-enhanced chemical vapor deposition and its related applications. Adv. Sci. 2016, 3, 1600003. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Tsugawa, K.; Kato, R.; Koga, Y.; Ishihara, M.; Yamada, T.; Okigawa, Y. High quality and large-area graphene synthesis with a high growth rate using plasma-enhanced CVD. Synthesiology 2017, 9, 124–138. [Google Scholar]
- Börrnert, F.; Barreiro, A.; Wolf, D.; Katsnelso, M.I.; Büchner, B.; Vandersypen, L.M.K.; Rümmeli, M.H. Lattice expansion in seamless bilayer graphene constrictions at high bias. Nano Lett. 2012, 12, 4455–4459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sze, S.M. Physics of Semiconductor Devices, 2nd ed.; John Wiley: New York, NY, USA, 1981. [Google Scholar]
- Zheng, J.; Wang, L.; Quhe, R.; Liu, Q.; Li, H.; Yu, D.; Mei, W.-N.; Shi, J.; Gao, Z.; Lu, J. Sub-10 nm gate length graphene transistors: Operating at terahertz frequencies with current Saturation. Sci. Rep. 2013, 3, 1314. [Google Scholar] [CrossRef] [Green Version]
- Luongo, G.; Bartolomeo, A.D.; Giubileo, F.; Chavarin, C.A.; Wenger, C. Electronic properties of graphene/p-silicon Schottky junction. J. Phys. D Appl. Phys. 2018, 51, 255305. [Google Scholar] [CrossRef]
- Tsai, D.S.; Liu, K.-K.; Lien, D.-H.; Tsai, M.-L.; Kang, C.-F.; Lin, C.-A.; Li, L.-J.; He, J.-H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911. [Google Scholar] [CrossRef]
- Ghods, A.; Saravade, V.G.; Zhou, C.; Ferguson, I.T. Field-effect passivation of metal/n-GaAs Schottky junction solar cells using atomic layer deposited Al2O3/ZnO ultrathin films. J. Vac. Sci. Technol. A 2020, 38, 012406. [Google Scholar] [CrossRef]
- Periyanagounder, D.; Gnanasekar, P.; Varadhan, P.; He, J.-H. Kulandaivel, High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode. J. Mater. Chem. C 2018, 6, 9545–9551. [Google Scholar] [CrossRef]
- Zhu, M.; Li, X.; Guo, Y.; Li, X.; Sun, P.; Zang, X.; Wang, K.; Zhong, M.; Wud, D.; Zhu, H. Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale 2014, 6, 4909–4914. [Google Scholar] [CrossRef]
- Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J.S.; Cao, Y.; Yu, G.; Shieh, C.L.; Nilsson, B.; Heeger, A.J. High-detectivity polymer photodetectors with spectral response from 300 to 1450 nm. Science 2009, 325, 1665–1667. [Google Scholar] [CrossRef]
- Xu, H.; Han, X.; Dai, X.; Liu, W.; Wu, J.; Zhu, J.; Kim, D.; Zou, G.; Sablon, K.A.; Sergeev, A.; et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv. Mater. 2018, 30, 1706561. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Liu, F.; Jung, Y.J.; Swastik Kar, S. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Bartolomeo, A.D.; Giubileo, F.; Luongo, G.; Iemmo, L.; Martucciello, N.; Niu, G.; Fraschke, M.; Skibitzki, O.; Schroeder, T.; Lupina, G. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device. 2D Mater. 2017, 4, 015024. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-H.; Cho, Y.; Byun, K.-E.; Shin, K.W.; Nam, S.-G.; Kim, C.; Kim, H.; Han, S.-A.; Kim, S.-W.; Shin, H.-J.; et al. Two-dimensional materials inserted at the metal/semiconductor interface: Attractive candidates for semiconductor device contacts. Nano Lett. 2018, 18, 4878–4884. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Yun, H.; Shin, D.H.; Nam, J.; Munshi, A.M.; Dheeraj, D.L.; Fimland, B.-O.; Weman, H.; Kim, K.S.; Lee, S.W.; et al. Single GaAs nanowire/graphene hybrid devices fabricated by a position-controlled microtransfer and an imprinting technique for an embedded structure. ACS Appl. Mater. Interfaces 2019, 11, 13514–13522. [Google Scholar] [CrossRef] [PubMed]
- Shawkat, M.S.; Chung, H.-S.; Dev, D.; Das, S.; Roy, T.; Jung, Y. Two-dimensional/three-dimensional Schottky junction photovoltaic devices realized by the direct CVD growth of vdW 2D PtSe2 layers on silicon. ACS Appl. Mater. Interfaces 2019, 11, 27251–27258. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Capellini, G.; Lupina, G.; Niermann, T.; Salvalaglio, M.; Marzegalli, A.; Schubert, M.A.; Zaumseil, P.; Krause, H.M.; Skibitzki, O.; et al. Photodetection in hybrid single-layer graphene/fully coherent germanium island nanostructures selectively grown on silicon nanotip patterns. ACS Appl. Mater. Interfaces 2016, 8, 2017–2026. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, I.; Vaziri, S.; Morales, J.D.A.; Frégonèse, S.; Cavallo, F.; Zamiri, M.; Dawson, N.; Artyushkova, K.; Jiang, Y.B.; Brueck, S.J.R.; et al. Vertical charge transfer and lateral transport in graphene/germanium heterostructures. ACS Appl. Mater. Interfaces 2017, 9, 15830–15840. [Google Scholar] [CrossRef]
- Shehzad, K.; Shi, T.; Qadir, A.; Wan, X.; Guo, H.; Ali, A.; Xuan, W.; Xu, H.; Gu, Z.; Peng, X.; et al. Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2017, 2, 1600262. [Google Scholar] [CrossRef]
- Lee, D.; Park, H.; Han, S.D.; Kim, S.H.; Huh, W.; Lee, J.Y.; Kim, Y.S.; Park, M.J.; Park, W.I.; Kang, C.-Y.; et al. Self-powered chemical sensing driven by graphene-based photovoltaic heterojunctions with chemically tunable built-in potentials. Small 2019, 15, 1804303. [Google Scholar] [CrossRef]
- Pea, M.; Seta, M.D.; Gaspare, L.D.; Persichetti, L.; Scaparro, A.M.; Miseikis, V.; Coletti, C.; Notargiacomo, A. Submicron size Schottky junctions on as-grown monolayer epitaxial graphene on Ge(100): A low-invasive scanned-probe-based study. ACS Appl. Mater. Interfaces 2019, 11, 35079–35087. [Google Scholar] [CrossRef]
- Abdalrheem, R.; Yam, F.K.; Ibrahim, A.R.; Lim, H.S.; Beh, K.P.; Ahmed, A.A.; Oglat, A.A.; Chahrour, K.M.; Farhat, O.F.; Afzal, N.; et al. Improvement in photodetection characteristics of graphene/p-Silicon heterojunction photodetector by PMMA/graphene cladding layer. J. Electron. Mater. 2019, 48, 4064–4072. [Google Scholar] [CrossRef]
- Tsai, D.-S.; Lien, W.-C.; Lien, D.-H.; Chen, K.-M.; Tsai, M.-L.; Senesky, D.G.; Yu, Y.-C.; Pisano, A.P.; He, J.H. Solar-blind photodetectors for harsh electronics. Sci. Rep. 2013, 3, 2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, L.; He, F.; Tian, Y.; Sun, B.; Fan, J.; Yu, X.; Ni, L.; Zhang, Y.; Chen, Y.; Zhang, W. Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO:Al nanorod-array-film structure with stable Schottky barrier. ACS Appl. Mater. Interfaces 2017, 9, 8161–8168. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Chen, D.; Guo, Q.; Feng, X.; Niu, T.; Liu, X.; Li, A.; Lai, J.; Sun, D.; et al. Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors. Nat. Commun. 2018, 9, 5168. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, S.; Shimatani, M.; Okuda, S.; Ogawa, S.; Kanai, Y.; Ono, T.; Inoue, K.; Matsumoto, K. Low dark current and high-responsivity graphene mid-infrared photodetectors using amplification of injected photo-carriers by photo-gating. Opt. Lett. 2019, 44, 2598–2601. [Google Scholar] [CrossRef] [PubMed]
- Nie, B.; Hu, J.-G.; Luo, L.-B.; Xie, C.; Zeng, L.-H.; Lv, P.; Li, F.-Z.; Jie, J.-S.; Feng, M.; Wu, C.-Y.; et al. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 2013, 9, 2872–2879. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, D.-S.; Chiang, P.-Y.; Tsai, M.-L.; Tu, W.-C.; Chen, C.; Chen, S.-L.; Chiu, C.-H.; Li, C.-Y.; Uen, W.-Y. Camphor-Based CVD Bilayer Graphene/Si Heterostructures for Self-Powered and Broadband Photodetection. Micromachines 2020, 11, 812. https://doi.org/10.3390/mi11090812
Tsai D-S, Chiang P-Y, Tsai M-L, Tu W-C, Chen C, Chen S-L, Chiu C-H, Li C-Y, Uen W-Y. Camphor-Based CVD Bilayer Graphene/Si Heterostructures for Self-Powered and Broadband Photodetection. Micromachines. 2020; 11(9):812. https://doi.org/10.3390/mi11090812
Chicago/Turabian StyleTsai, Dung-Sheng, Ping-Yu Chiang, Meng-Lin Tsai, Wei-Chen Tu, Chi Chen, Shih-Lun Chen, Ching-Hsueh Chiu, Chen-Yu Li, and Wu-Yih Uen. 2020. "Camphor-Based CVD Bilayer Graphene/Si Heterostructures for Self-Powered and Broadband Photodetection" Micromachines 11, no. 9: 812. https://doi.org/10.3390/mi11090812
APA StyleTsai, D. -S., Chiang, P. -Y., Tsai, M. -L., Tu, W. -C., Chen, C., Chen, S. -L., Chiu, C. -H., Li, C. -Y., & Uen, W. -Y. (2020). Camphor-Based CVD Bilayer Graphene/Si Heterostructures for Self-Powered and Broadband Photodetection. Micromachines, 11(9), 812. https://doi.org/10.3390/mi11090812