Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Modified Coburn–Winters Model
3.2. Fitting of the Experimental Data
4. Discussion
4.1. Effect of Process Pressure
4.2. Effect of Bias Power
4.3. Optimized Etching Results
4.4. X-ray Energy Application Range
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weitkamp, T.; Diaz, A.; David, C.; Pfeiffer, F.; Stampanoni, M.; Cloetens, P.; Ziegler, E. X-ray phase imaging with a grating interferometer. Opt. Express 2005, 13, 6296–6304. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, K.; Wang, Z.; Liu, Y.; Liu, X.; Wu, Z.; McDonald, S.A.; Marone, F.; Stampanoni, M. Low-dose, simple, and fast grating-based X-ray phase-contrast imaging. Proc. Natl. Acad. Sci. USA 2010, 107, 13576–13581. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, V.; Seifert, M.; Niepold, T.; Pelzer, G.; Rieger, J.; Ziegler, J.; Michel, T.; Anton, G. Non-destructive testing of archaeological findings by grating-based X-ray phase-contrast and dark-field imaging. J. Imaging 2018, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Yaniz, M.; Koch, F.; Zanette, I.; Rack, A.; Meyer, P.; Kunka, D.; Hipp, A.; Mohr, J.; Pfeiffer, F. X-ray grating interferometry at photon energies over 180 keV. Appl. Phys. Lett. 2015, 106, 151105. [Google Scholar] [CrossRef]
- Momose, A. Recent advances in X-ray phase imaging. Jpn. J. Appl. Phys. 2005, 44, 6355. [Google Scholar] [CrossRef]
- Arboleda, C.; Wang, Z.; Koehler, T.; Martens, G.; Van Stevendaal, U.; Bartels, M.; Villanueva-Perez, P.; Roessl, E.; Stampanoni, M. Sensitivity-based optimization for the design of a grating interferometer for clinical X-ray phase contrast mammography. Opt. Express 2017, 25, 6349–6364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donath, T.; Pfeiffer, F.; Bunk, O.; Groot, W.; Bednarzik, M.; Grünzweig, C.; Hempel, E.; Popescu, S.; Hoheisel, M.; David, C. Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source. Rev. Sci. Instrum. 2009, 80, 053701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, D.; Tanaka, M.; Shimada, K.; Yashiro, W.; Momose, A.; Hattori, T. Fabrication of large area diffraction grating using LIGA process. Microsyst. Technol. 2008, 14, 1311–1315. [Google Scholar] [CrossRef]
- Becker, E.; Ehrfeld, W.; Hagmann, P.; Maner, A.; Münchmeyer, D. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron. Eng. 1986, 4, 35–56. [Google Scholar] [CrossRef]
- David, C.; Bruder, J.; Rohbeck, T.; Grünzweig, C.; Kottler, C.; Diaz, A.; Bunk, O.; Pfeiffer, F. Fabrication of diffraction gratings for hard X-ray phase contrast imaging. Microelectron. Eng. 2007, 84, 1172–1177. [Google Scholar] [CrossRef]
- Romano, L.; Kagias, M.; Vila-Comamala, J.; Jefimovs, K.; Tseng, L.-T.; Guzenko, V.A.; Stampanoni, M. Metal assisted chemical etching of silicon in the gas phase: A nanofabrication platform for X-ray optics. Nanoscale Horiz. 2020, 5, 869–879. [Google Scholar] [CrossRef] [Green Version]
- Romano, L.; Vila-Comamala, J.; Jefimovs, K.; Stampanoni, M. High-Aspect-Ratio Grating Microfabrication by Platinum-Assisted Chemical Etching and Gold Electroplating. Adv. Eng. Mater. 2020, 2000258. [Google Scholar] [CrossRef]
- Romano, L.; Stampanoni, M. Microfabrication of X-ray Optics by Metal Assisted Chemical Etching: A Review. Micromachines 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, P.S.; Hollowell, A.E.; Arrington, C.L.; Dagel, A.L. High aspect ratio anisotropic silicon etching for x-ray phase contrast imaging grating fabrication. Mater. Sci. Semicond. Process. 2019, 92, 80–85. [Google Scholar] [CrossRef]
- Jefimovs, K.; Romano, L.; Vila-Comamala, J.; Kagias, M.; Wang, Z.; Wang, L.; Dais, C.; Solak, H.; Stampanoni, M. High-aspect ratio silicon structures by displacement Talbot lithography and Bosch etching. In Advances in Patterning Materials and Processes XXXIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; p. 101460L. [Google Scholar]
- Laermer, F.; Schilp, A. Method of Anisotropically Etching Silicon. U.S. Patent 5501893A, 26 March 1996. [Google Scholar]
- Karttunen, J.; Kiihamaki, J.; Franssila, S. Loading effects in deep silicon etching. In Micromachining and Microfabrication Process Technology VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2000; pp. 90–97. [Google Scholar]
- Li, D. Encyclopedia of Microfluidics and Nanofluidics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Blauw, M.; Zijlstra, T.; Bakker, R.; Van der Drift, E. Kinetics and crystal orientation dependence in high aspect ratio silicon dry etching. J. Vac. Sci. Technol. B 2000, 18, 3453–3461. [Google Scholar] [CrossRef]
- Coburn, J.; Winters, H.F. Conductance considerations in the reactive ion etching of high aspect ratio features. Appl. Phys. Lett. 1989, 55, 2730–2732. [Google Scholar] [CrossRef]
- Clausing, P. The flow of highly rarefied gases through tubes of arbitrary length. J. Vac. Sci. Technol. 1971, 8, 636–646. [Google Scholar] [CrossRef]
- Gosalvez, M.; Zhou, Y.; Zhang, Y.; Zhang, G.; Li, Y.; Xing, Y. Simulation of microloading and ARDE in DRIE. In Proceedings of the 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 1255–1258. [Google Scholar]
- Bourouina, T.; Masuzawa, T.; Fujita, H. The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes. J. Microelectromechanical Syst. 2004, 13, 190–199. [Google Scholar] [CrossRef]
- Yeom, J.; Wu, Y.; Selby, J.C.; Shannon, M.A. Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect. J. Vac. Sci. Technol. B 2005, 23, 2319–2329. [Google Scholar] [CrossRef]
- Jensen, S.; Hansen, O. Characterization of the microloading effect in deep reactive ion etching of silicon. In Micromachining and Microfabrication Process Technology IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2003. [Google Scholar]
- Kagias, M.; Wang, Z.; Guzenko, V.A.; David, C.; Stampanoni, M.; Jefimovs, K. Fabrication of Au gratings by seedless electroplating for X-ray grating interferometry. Mater. Sci. Semicond. Process. 2019, 92, 73–79. [Google Scholar] [CrossRef]
- O’Hanlon, J.F. A User’s Guide to Vacuum Technology; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Jansen, H.; de Boer, M.; Wiegerink, R.; Tas, N.; Smulders, E.; Neagu, C.; Elwenspoek, M. BSM 7: RIE lag in high aspect ratio trench etching of silicon. Microelectron. Eng. 1997, 35, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Huppert, G.; Sawin, H.H. Ion bombardment in rf plasmas. J. Appl. Phys. 1990, 68, 3916–3934. [Google Scholar] [CrossRef]
- Shwartz, G.C. Handbook of Semiconductor Interconnection Technology; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wu, B.; Kumar, A.; Pamarthy, S. High aspect ratio silicon etch: A review. J. Appl. Phys. 2010, 108, 9. [Google Scholar] [CrossRef]
- Yeom, J.; Wu, Y.; Shannon, M.A. Critical aspect ratio dependence in deep reactive ion etching of silicon. In Proceedings of the TRANSDUCERS’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664), Boston, MA, USA, 8–12 June 2003. [Google Scholar]
- Nojiri, K. Dry Etching Technology for Semiconductors; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ayón, A.A.; Braff, R.; Lin, C.-C.; Sawin, H.H.; Schmidt, M.A. Characterization of a time multiplexed inductively coupled plasma etcher. J. Electrochem. Soc. 1999, 146, 339. [Google Scholar]
- Nishi, Y.; Doering, R. Handbook of Semiconductor Manufacturing Technology; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Walker, M.J. Comparison of Bosch and cryogenic processes for patterning high-aspect-ratio features in silicon. In MEMS Design, Fabrication, Characterization, and Packaging; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; pp. 89–99. [Google Scholar]
- Stoffels, E.; Stoffels, W.W.; Tachibana, K.; Imai, S. Angle resolved mass spectrometry of positive ions transmitted through high aspect ratio channels in a radio frequency discharge. Jpn. J. Appl. Phys. 1997, 36, 4632. [Google Scholar] [CrossRef]
- Gottscho, R.A.; Jurgensen, C.W.; Vitkavage, D.J. Microscopic uniformity in plasma etching. J. Vac. Sci. Technol. B 1992, 10, 2133–2147. [Google Scholar] [CrossRef]
- Ishikawa, K.; Karahashi, K.; Ishijima, T.; Cho, S.I.; Elliott, S.; Hausmann, D.; Mocuta, D.; Wilson, A.; Kinoshita, K. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom? Jpn. J. Appl. Phys. 2018, 57, 06JA01. [Google Scholar] [CrossRef]
- Lohmann, A.W.; Silva, D.E. An interferometer based on the Talbot effect. Opt. Commun. 1971, 2, 413–415. [Google Scholar] [CrossRef]
- David, C.; Nöhammer, B.; Solak, H.H.; Ziegler, E. Differential x-ray phase contrast imaging using a shearing interferometer. Appl. Phys. Lett. 2002, 81, 3287–3289. [Google Scholar] [CrossRef]
- Momose, A. Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt. Express 2003, 11, 2303–2314. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E.F.; Brönnimann, C.; Grünzweig, C.; David, C. Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 2008, 7, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Talbot, H.F. LXXVI. Facts relating to optical science. No. IV. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1836, 9, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Takeda, Y.; Yashiro, W.; Suzuki, Y.; Aoki, S.; Hattori, T.; Momose, A. X-Ray Phase Imaging with Single Phase Grating. Jpn. J. Appl. Phys. 2007, 46, L89–L91. [Google Scholar] [CrossRef]
- Beck, M. X-ray Imaging with a Grating Interferometer. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2009. [Google Scholar]
- Henke, B.L.; Gullikson, E.M.; Davis, J.C. X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54, 181–342. [Google Scholar] [CrossRef] [Green Version]
- Chantler, C.T. Theoretical Form Factor, Attenuation, and Scattering Tabulation for Z=1–92 from E=1–10 eV to E=0.4–1.0 MeV. J. Phys. Chem. Ref. Data 1995, 24, 71–643. [Google Scholar] [CrossRef]
- Jefimovs, K. Fabrication of gratings by conformal seedless electroplating of gold on low resistivity silicon templates for X-ray interferometric imaging. Micromachines 2020. submitted. [Google Scholar]
- Josell, D. Pushing the Limits of Bottom-Up Gold Filling for X-Ray Grating Interferometry. J. Electrochem. Soc. 2020, in press. [Google Scholar]
- Song, T.-E.; Lee, S.; Han, H.; Jung, S.; Kim, S.-H.; Kim, M.J.; Lee, S.W.; Ahn, C.W. Evaluation of grating realized via pulse current electroplating combined with atomic layer deposition as an x-ray grating interferometer. J. Vac. Sci. Technol. A 2019, 37, 030903. [Google Scholar] [CrossRef]
- Josell, D.; Ambrozik, S.; Williams, M.; Hollowell, A.; Arrington, C.; Muramoto, S.; Moffat, T. Exploring the Limits of Bottom-Up Gold Filling to Fabricate Diffraction Gratings. J. Electrochem. Soc. 2019, 166, D898. [Google Scholar] [CrossRef]
- Vila-Comamala, J.; Romano, L.; Guzenko, V.; Kagias, M.; Stampanoni, M.; Jefimovs, K. Towards sub-micrometer high aspect ratio X-ray gratings by atomic layer deposition of iridium. Microelectron. Eng. 2018, 192, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Romano, L.; Vila-Comamala, J.; Kagias, M.; Vogelsang, K.; Schift, H.; Stampanoni, M.; Jefimovs, K. High aspect ratio metal microcasting by hot embossing for X-ray optics fabrication. Microelectron. Eng. 2017, 176, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Josell, D.; Ambrozik, S.; Moffat, T.P. Bottom-up Au Filling for Metallizations and High Aspect Ratio Features. ECS Meet. Abstr. 2020, MA2020-01, 1290. [Google Scholar] [CrossRef]
Recipe No. | Pressure (mTorr) | Radiofrequency (RF) (W) etch/dep. | Inductively Coupled Plasma (ICP) (W) etch/dep. | R0 (nm/s) |
---|---|---|---|---|
1 | 15 | 50/50 | 800/800 | 52.4 |
2 | 25 | 50/50 | 800/800 | 65.3 |
3 | 25 | 40/40 | 700/700 | 19.3 |
4 | 25 | 50/50 | 800/800 | 73.3 |
5 | 20 | 50/50 | 800/800 | 54.0 |
6 | 20 | 30/20 | 600/600 | 18.0 |
Recipe No. | 1.2 μm | 2 μm | 3 μm | 4 μm | 5.25 μm |
---|---|---|---|---|---|
1 | 0.0143 | n/a | n/a | n/a | n/a |
2 | 0.0315 | n/a | n/a | n/a | n/a |
3 | 0.0040 | n/a | n/a | n/a | n/a |
4 | n/a | 0.0194 | 0.0097 | 0.0197 | 0.0174 |
5 | n/a | 0.0183 | 0.0091 | 0.0146 | 0.0116 |
6 | n/a | n/a | 0.0047 | n/a | n/a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Jefimovs, K.; Romano, L.; Stampanoni, M. Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching. Micromachines 2020, 11, 864. https://doi.org/10.3390/mi11090864
Shi Z, Jefimovs K, Romano L, Stampanoni M. Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching. Micromachines. 2020; 11(9):864. https://doi.org/10.3390/mi11090864
Chicago/Turabian StyleShi, Zhitian, Konstantins Jefimovs, Lucia Romano, and Marco Stampanoni. 2020. "Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching" Micromachines 11, no. 9: 864. https://doi.org/10.3390/mi11090864
APA StyleShi, Z., Jefimovs, K., Romano, L., & Stampanoni, M. (2020). Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching. Micromachines, 11(9), 864. https://doi.org/10.3390/mi11090864