Revealing the Plastic Mode of Time-Dependent Deformation of a LiTaO3 Single Crystal by Nanoindentation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nabarro, F.R.N.; De Villiers, F. Physics of Creep and Creep-Resistant Alloys; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Cannon, W.R.; Langdon, T.G. Creep of ceramics. J. Mater. Sci. 1983, 18, 1–50. [Google Scholar] [CrossRef]
- Li, W.B.; Henshall, J.L.; Hooper, R.M. The mechanisms of indentation creep. Acta Metall. Mater. 1991, 39, 3099–3110. [Google Scholar] [CrossRef]
- He, J.Z.; Wang, G.Z.; Tu, S.T.; Xuan, F.Z. Effect of constraint on creep crack initiation time in test specimens in ASTM-E1457 standard. Eng. Fract. Mech. 2017, 176, 61–73. [Google Scholar] [CrossRef]
- Ginder, R.S.; Nix, W.D.; Pharr, G.M. A simple model for indentation creep. J. Mech. Phys. Solids 2018, 112, 552–562. [Google Scholar] [CrossRef]
- Gao, Z.L.; Song, Y.X.; Pan, Z.X.; Chen, J.; Ma, Y. Nanoindentation investigation on the creep behavior of P92 steel weld joint after creep-fatigue loading. Int. J. Fatigue 2020, 134, 105506. [Google Scholar] [CrossRef]
- Choi, I.C.; Yoo, B.G.; Kim, Y.J.; Jang, J.-I. Indentation creep revisited. J. Mater. Res. 2012, 27, 3–11. [Google Scholar] [CrossRef]
- Li, H.; Ngan, A.H.W. Size effects of nanoindentation creep. J. Mater. Res. 2004, 19, 513–522. [Google Scholar] [CrossRef]
- Peng, G.; Xu, F.; Chen, J.; Hu, Y.; Wang, H.; Zhang, T. A cost-effective voice coil motor-based portable micro-indentation device for in situ testing. Measurement 2020, 165, 108105. [Google Scholar] [CrossRef]
- Ma, Y.; Peng, G.J.; Feng, Y.H.; Zhang, T.H. Nanoindentation investigation on creep behavior of amorphous CuZrAl/nanocrystalline Cu nanolaminates. J. Non-Cryst. Solids 2017, 465, 8–16. [Google Scholar] [CrossRef]
- Zhang, T.H.; Ye, J.H.; Feng, Y.H.; Ma, J. On the spherical nanoindentation creep of metallic glassy thin films at room temperature. Mater. Sci. Eng. A 2017, 685, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Peng, G.J.; Feng, Y.H.; Zang, T.H. Nanoindentation investigation on the creep mechanism in metallic glassy films. Mater. Sci. Eng. A 2016, 651, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.G.; Kim, J.Y.; Kim, Y.J.; Choi, I.-C.; Shim, S.; Tsui, T.Y.; Bei, H.; Ramamurty, U.; Jang, J.-I. Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. Int. J. Plast. 2012, 37, 108–118. [Google Scholar] [CrossRef]
- Yu, L.; Xu, X.-Q.; Lu, C.-D.; Zhang, T.-H.; Ma, Y. Investigation on the microstructural and mechanical properties of a Polytetrafluoroethylene thin film by radio frequency magnetron sputtering. Thin Solid Films 2020, 712, 138302. [Google Scholar] [CrossRef]
- Zhang, K.; Weertman, J.R.; Eastman, J.A. The influence of time, temperature, and grain size on indentation creep in high purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 2004, 85, 5197–5199. [Google Scholar] [CrossRef]
- Song, X.; Huang, X.W.; Gao, Z.L.; Li, X.Q.; Ma, Y. Nanoindentation creep behavior of RPV’s weld joint at room temperature. Mech. Time-Depend. Mater. 2019. [Google Scholar] [CrossRef]
- Yoo, B.G.; Oh, J.H.; Kim, Y.J.; Park, K.-W.; Lee, J.-C.; Jang, J.-I. Nanoindentation analysis of time-dependent deformation in as-cast and annealed Cu–Zr bulk metallic glass. Intermetallics 2010, 18, 1898–1901. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, Y.H.; Debela, T.T.; Peng, G.J.; Zhang, T.H. Nanoindentation study on the creep characteristics of high-entropy alloy films: Fcc versus bcc structures. Int. J. Refract. Met. Hard Mater. 2016, 54, 395–400. [Google Scholar] [CrossRef]
- Ma, Y.; Peng, G.J.; Wen, D.H.; Zhang, T.H. Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng. A 2015, 621, 111–117. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, X.W.; Hang, W.; Liu, M. Nanoindentation size effect on stochastic behavior of incipient plasticity in a LiTaO3 single crystal. Eng. Fract. Mech. 2020, 226, 106877. [Google Scholar] [CrossRef]
- Smith, R.T.; Welsh, F.S. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobite. J. Appl. Phys. 1971, 42, 2219–2230. [Google Scholar] [CrossRef]
- Hang, W.; Zhou, L.; Shimizu, J.; Yuan, J.-L.; Yamamoto, T. Study on the mechanical properties of lithium tantalate and the influence on its machinability. Int. J. Autom. Technol. 2013, 7, 645. [Google Scholar] [CrossRef]
- Beri, H.; Ling, Y.; Liu, M.; Hang, W.; Yuan, J. Effect of rotational speed ratio between platen and work piece on lapping processes. Mach. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Gruber, M.; Leitner, A.; Kiener, D.; Supancic, P.; Bemejo, R. Incipient plasticity and surface damage in LiTaO3 and LiNbO3 single crystals. Mater. Design 2018, 153, 221–231. [Google Scholar] [CrossRef]
- Gruber, M.; Kraleva, I.; Supancic, P.; Bielen, J.; Kiener, D.; Bermejo, R. Strength distribution and fracture analyses of LiNbO3 and LiTaO3 single crystals under biaxial loading. J. Eur. Ceram. Soc. 2017, 37, 4397–4406. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, X.; Hang, W.; Liu, M.; Yuan, J.-L.; Zhang, T.-H. On the delayed incipient plastic deformation in a LiTaO3 single crystal by nanoindentation. J. Phys. D Appl. Phys. 2020, 53, 185303. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, X.; Song, Y.; Hang, W.; Yuan, J.; Zhang, T. Orientation-independent yield stress and activation volume of dislocation nucleation in LiTaO3 single crystal by nanoindentation. Materials 2019, 12, 2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Huang, X.; Song, Y.; Hang, W.; Zhang, T. Room-temperature creep behavior and activation volume of dislocation nucleation in a LiTaO3 single crystal by nanoindentation. Materials 2019, 12, 1683. [Google Scholar] [CrossRef] [Green Version]
- Hang, W.; Huang, X.W.; Liu, M.; Ma, Y. On the room-temperature creep behavior and its correlation with length scale of a LiTaO3 single crystal by spherical nanoindentation. Materials 2019, 12, 4213. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.J.; Rico, A.J.; Rodriguez, J.R. Tough ceramic coatings: Carbon nanotube reinforced silica sol–gel. Appl. Surf. Sci. 2010, 256, 6375–6384. [Google Scholar] [CrossRef]
- Wang, M.; Wang, D.; Hopfeld, M.; Grieseler, R.; Rossberg, D.; Schaaf, P. Nanoindentation of nano-al/si3n4 multilayers with vickers and brinell indenters. J. Eur. Ceram. Soc. 2013, 33, 2355–2358. [Google Scholar] [CrossRef]
- Kothari, A.K.; Hu, S.; Xia, Z.; Konca, E.; Sheldon, B.W. Enhanced fracture toughness in carbon-nanotube-reinforced amorphous silicon nitride nanocomposite coatings. Acta Mater. 2012, 60, 3333–3339. [Google Scholar] [CrossRef]
- Zeng, X.; An, Y.; Li, Z.; Ji, R.-Q.; Gao, Z.-H.; Zhu, W.; Ji, S.-M. Deformation characteristics of aramid fiber–reinforced pneumatic wheel and machining analysis. Int. J. Adv. Manuf. Technol. 2020, 110, 581–591. [Google Scholar] [CrossRef]
- Choi, I.C.; Zhao, Y.; Kim, Y.J.; Yoo, B.G.; Suh, J.Y.; Ramamurty, U.; Jang, J.-I. Indentation size effect and shear transformation zone size in a bulk metallic glass in two different structural states. Acta Mater. 2012, 60, 6862–6868. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Pan, D.; Inoue, A.; Sakurai, T.; Chen, M.W. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl. Acad. Sci. USA 2008, 105, 14769–14772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, Y.; Shibata, T.; Inoue, A.; Masumoto, T. Stress overshoot in stress-strain curves of Zr65Al10Ni10Cu15 metallic glass. Mater. Trans. JIM 1999, 40, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Poisl, W.H.; Oliver, W.C.; Fabes, B.D. The relationship between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 1995, 10, 2024–2032. [Google Scholar] [CrossRef]
- Duong, H.; Wolfenstine, J. Low-stress creep of single-crystalline calcium oxide. J. Am. Ceram. Soc. 2010, 74, 2697–2699. [Google Scholar] [CrossRef]
- Lee, D.J. Estimating tensile creep rate of ceramics from flexure data. J. Eur. Ceram. Soc. 1996, 16, 1377–1383. [Google Scholar] [CrossRef]
- Jing, X.; Yang, X.; Shi, D.; Niu, H. Tensile creep behavior of three-dimensional four-step braided SiC/SiC composite at elevated temperature. Ceram. Int. 2017, 43, 6721–6729. [Google Scholar] [CrossRef]
- Lawn, B.R. Indentation of ceramics with spheres: A century after Hertz. J. Am. Ceram. Soc. 1998, 81, 1977–1994. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Jia, D.; Meng, Q. Non-180° domains formation mechanism in LiTaO3 grains of an Al2O3/LiTaO3 composite. Ceram. Int. 2009, 35, 949–952. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Huang, X.; Lu, C.; Liu, Y.; Zhang, T.; Ma, Y. Revealing the Plastic Mode of Time-Dependent Deformation of a LiTaO3 Single Crystal by Nanoindentation. Micromachines 2020, 11, 878. https://doi.org/10.3390/mi11090878
Zhou S, Huang X, Lu C, Liu Y, Zhang T, Ma Y. Revealing the Plastic Mode of Time-Dependent Deformation of a LiTaO3 Single Crystal by Nanoindentation. Micromachines. 2020; 11(9):878. https://doi.org/10.3390/mi11090878
Chicago/Turabian StyleZhou, Shengyun, Xianwei Huang, Congda Lu, Yunfeng Liu, Taihua Zhang, and Yi Ma. 2020. "Revealing the Plastic Mode of Time-Dependent Deformation of a LiTaO3 Single Crystal by Nanoindentation" Micromachines 11, no. 9: 878. https://doi.org/10.3390/mi11090878
APA StyleZhou, S., Huang, X., Lu, C., Liu, Y., Zhang, T., & Ma, Y. (2020). Revealing the Plastic Mode of Time-Dependent Deformation of a LiTaO3 Single Crystal by Nanoindentation. Micromachines, 11(9), 878. https://doi.org/10.3390/mi11090878