Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Calculation Methods
- The RNG k-ε model has a more accurate description of the dissipation rate of turbulent kinetic energy
- The RNG k-ε model considers the influence of eddy currents on turbulence and improves the accuracy of vortices flow
- The RNG k-ε model provides an analytical formula for the turbulent Prandtl number, which can more accurately simulate the problem of turbulent boundary layer flow.
2.2. Surface Microstructure Modeling
3. Results and Discussion
3.1. Positive Spherical Crown Structure
3.2. Negative Spherical Crown Structure
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Choi, J.; Chen, S.; Deng, Y.; Xue, Y.; Reeder, J.T.; Franklin, D.; Oh, Y.S.; Model, J.B.; Aranyosi, A.J.; Lee, S.P.; et al. Skin-Interfaced Microfluidic Systems that Combine Hard and Soft Materials for Demanding Applications in Sweat Capture and Analysis. Adv. Healthc. Mater. 2020. [Google Scholar] [CrossRef] [PubMed]
- Amini-Rentsch, L.; Vanoli, E.; Richard-Bildstein, S.; Marti, R.; Vilé, G. A Novel and Efficient Continuous-Flow Route To Prepare Trifluoromethylated N-Fused Heterocycles for Drug Discovery and Pharmaceutical Manufacturing. Ind. Eng. Chem. Res. 2019, 58, 10164–10171. [Google Scholar] [CrossRef] [Green Version]
- Tortoioli, S.; Friedli, A.; Prud’Homme, A.; Richard-Bildstein, S.; Kohler, P.; Abele, S.; Vilé, G. Development of an efficient and sustainable synthesis of 2-(3-methyl-1H-1,2,4-triazol-1-yl) acetic acid under continuous-flow conditions. Green Chem. 2020, 22, 3748–3758. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.-X.; Wu, T.; Zou, T.; Wang, Y.; Jiang, W.; Xing, F.; Yang, J.; Guo, C. Ultrasensitive Optical Detection of Water Pressure in Microfluidics Using Smart Reduced Graphene Oxide Glass. Front. Chem. 2019, 7, 7. [Google Scholar] [CrossRef]
- Bixler, G.D.; Bhushan, B. Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces. Adv. Funct. Mater. 2013, 23, 4507–4528. [Google Scholar] [CrossRef]
- Bechert, D.W.; Bruse, M.; Hage, W.; Meyer, R. Fluid Mechanics of Biological Surfaces and their Technological Application. Naturwissenschaften 2000, 87, 157–171. [Google Scholar] [CrossRef]
- Reif, W.E. Morphogenesis and function of the squamation in sharks. Neues Jahrb. Geol. Paläontologie-Abh. 1982, 164, 172–183. [Google Scholar] [CrossRef]
- Bhushan, B. Biomimetics: Lessons from nature–an overview. Philos. Trans. R. Soc. A 2009, 367, 1445–1486. [Google Scholar] [CrossRef] [Green Version]
- Bechert, D.W.; Bruse, M.; Hage, W.; Van Der Hoeven, J.G.T.; Hoppe, G. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 1997, 338, 59–87. [Google Scholar] [CrossRef]
- Dean, B.; Bhushan, B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philos. Trans. R. Soc. A 2010, 368, 5737. [Google Scholar] [CrossRef]
- Goldstein, D.; Handler, R.; Sirovich, L. Direct numerical simulation of turbulent flow over a modeled riblet covered surface. J. Fluid Mech. 1995, 302, 333–376. [Google Scholar] [CrossRef]
- Cui, J.; Fu, Y. A Numerical Study on Pressure Drop in Microchannel Flow with Different Bionic Micro-Grooved Surfaces. J. Bionic Eng. 2012, 9, 99–109. [Google Scholar] [CrossRef]
- Lee, S.-J. Flow field analysis of a turbulent boundary layer over a riblet surface. Exp. Fluids 2001, 30, 153–166. [Google Scholar] [CrossRef]
- Ng, J.H.; Jaiman, R.K.; Lim, T. Direct Numerical Simulation of Geometric Effects on Turbulent Flows over Riblets. In Proceedings of the 7th AIAA Flow Control Conference, Dallas, TX, USA, 18–21 May 2014; Volume 255, pp. 503–539. [Google Scholar] [CrossRef]
- El-Samni, O.; Chun, H.; Yoon, H. Drag reduction of turbulent flow over thin rectangular riblets. Int. J. Eng. Sci. 2007, 45, 436–454. [Google Scholar] [CrossRef]
- Bechert, D.W.; Bruse, M.; Hage, W. Experiments with three-dimensional riblets as an idealized model of shark skin. Exp. Fluids 2000, 28, 403–412. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Neinhuis, C. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Watson, G.; Watson, J. Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. Appl. Surf. Sci. 2004, 235, 139–144. [Google Scholar] [CrossRef]
- Mompean, G. Numerical simulation of a turbulent flow near a right-angled corner using the Speziale non-linear model with RNG K–ε equations. Comput. Fluids 1998, 27, 847–859. [Google Scholar] [CrossRef]
- Liu, Z.H.; Dong, W.C.; Xia, F. The effects of the tip shape of V-groove on drag reduction and flow field characteristics by numerical analysis. J. Hydrodyn. 2006, 21, 223–231. [Google Scholar]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Tian, Q.Q.; Wang, M.J.; Huang, Z.P.; Wang, T. Experimental study of hydrophobic mechanism of micro-riblets on imitative shark skin. J. Dalian Univ. Technol. 2013, 53, 503–507. [Google Scholar]
- Chu, D.C.; Karniadakis, G.E. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. J. Fluid Mech. 1993, 250, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Pu, X.; Li, G.; Liu, Y. Progress and Perspective of Studies on Biomimetic Shark Skin Drag Reduction. ChemBioEng Rev. 2016, 3, 26–40. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ao, M.; Wang, M.; Zhu, F. Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface. Micromachines 2021, 12, 59. https://doi.org/10.3390/mi12010059
Ao M, Wang M, Zhu F. Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface. Micromachines. 2021; 12(1):59. https://doi.org/10.3390/mi12010059
Chicago/Turabian StyleAo, Mingrui, Miaocao Wang, and Fulong Zhu. 2021. "Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface" Micromachines 12, no. 1: 59. https://doi.org/10.3390/mi12010059
APA StyleAo, M., Wang, M., & Zhu, F. (2021). Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface. Micromachines, 12(1), 59. https://doi.org/10.3390/mi12010059