Macro-Modeling for N-Type Feedback Field-Effect Transistor for Circuit Simulation
Abstract
:1. Introduction
2. Macro-Modeling of FBFET
2.1. FBFET Mechanism
2.2. TCAD Simulation
2.3. Macro-Model of NFBFET
3. SPICE Simulation Results
3.1. Parameter Fitting
3.2. SPICE Results of Macro-Model
3.3. Model Validation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, W.; Cao, Y. New Generation of Predictive Technology Model for Sub-45 nm Early Design Exploration. IEEE Trans. Electron Devices 2006, 53, 2816–2823. [Google Scholar] [CrossRef]
- Khakifirooz, A.; Antoniadis, D.A. MOSFET Performance Scaling-Part I: Historical Trends. IEEE Trans. Electron Devices 2008, 55, 1391–1400. [Google Scholar] [CrossRef]
- Cristoloveanu, S.; Wan, J.; Zaslavsky, A. A Review of Sharp-Switching Devices for Ultra-Low Power Applications. IEEE J. Electron Devices Soc. 2016, 4, 215–226. [Google Scholar] [CrossRef]
- Choi, W.Y.; Park, B.-G.; Lee, J.D.; Liu, T.-J.K. Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec. IEEE Electron Device Lett. 2007, 28, 743–745. [Google Scholar] [CrossRef]
- Kam, H.; Lee, D.T.; Howe, R.T.; King, T.-J. A new nano-electro-mechanical field effect transistor (NEMFET) design for low-power electronics. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5 December 2005; pp. 463–466. [Google Scholar] [CrossRef]
- Khan, A.I.; Yeung, C.W.; Hu, C.; Salahuddin, S. Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation. In Proceedings of the 2011 International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 11.3.1–11.3.4. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Griffin, P.B.; Plummer, J.D. I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q. In Proceedings of the Digest, International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 8–11 December 2002; pp. 289–292. [Google Scholar] [CrossRef]
- Solaro, Y.; Wan, J.; Fonteneau, P.; Fenouillet-Beranger, C.; Le Royer, C.; Zaslavsky, A.; Ferrari, P.; Cristoloveanu, S. Z2-FET: A promising FDSOI device for ESD protection. Solid State Electron. 2014, 97, 23–29. [Google Scholar] [CrossRef]
- Dirani, H.E.; Solaro, Y.; Fonteneau, P.; Ferrari, P.; Cristoloveanu, S. Properties and mechanism of Z2-FET at variable temperature. Solid State Electron. 2016, 115, 201–206. [Google Scholar] [CrossRef]
- Wan, J.; Le Royer, C.; Zaslavsky, A.; Cristoloveanu, S. Z2-FET: A zero-slope switching device with gate-controlled hysteresis. In Proceedings of the Technical Program of 2012 VLSI Technology, System and Application, Hsinchu, Taiwan, 23–25 April 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, C.; Ko, E.; Shin, C. Steep slope silicon-on-insulator feedback field-effect transistor: Design and performance analysis. IEEE Trans. Electron Devices 2019, 66, 286–291. [Google Scholar] [CrossRef]
- Lee, C.; Sung, J.; Shin, C. Understanding of Feedback Field-Effect Transistor and Its Applications. Appl. Sci. 2020, 10, 3070. [Google Scholar] [CrossRef]
- Oh, J.H.; Yu, Y.S. Investigation of monolithic 3D integrated circuit inverter with feedback field effect transistors using TCAD simulation. Micromachines 2020, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.-W.; Hwang, S.; Baek, M.-H.; Cho, S.; Park, B.-G. Dual gate positive feedback field-effect transistor for low power analog circuit. In Proceedings of the 2017 Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 4–5 June 2017; pp. 115–116. [Google Scholar] [CrossRef]
- Wan, J.; Royer, C.L.; Zaslavsky, A.; Cristoloveanu, S. A systematic study of the sharp-switching Z2-FET device: From mechanism to modeling and compact memory applications. Solid State Electron. 2013, 90, 2–11. [Google Scholar] [CrossRef]
- Lee, K.H.; El Dirani, H.; Fonteneau, P.; Bawedin, M.; Cristoloveanu, S. Sharp Logic Switch Based on Band Modulation. IEEE Electron Device Lett. 2019, 40, 1852–1855. [Google Scholar] [CrossRef]
- Yeung, C.W.; Padilla, A.; Liu, T.-J.K.; Hu, C. Programming characteristics of the steep turn-on/off feedback FET (FBFET). In Proceedings of the 2009 Symposium on VLSI Technology, Kyoto, Japan, 15–17 June 2009; pp. 176–177. [Google Scholar]
- Kang, H.; Cho, J.; Kim, Y.; Lim, D.; Woo, S.; Cho, K.; Kim, S. Nonvolatile and volatile memory characteristics of a silicon nanowire feedback field-effect transistor with a nitride charge-storage layer. IEEE Trans. Electron Devices 2019, 66, 3342–3348. [Google Scholar] [CrossRef]
- Cho, J.; Lim, D.; Woo, S.; Cho, K.; Kim, S. Static Random Access Memory Characteristics of Single-Gated Feedback Field-Effect Transistors. IEEE Trans. Electron Devices 2019, 66, 413–419. [Google Scholar] [CrossRef]
- Kwon, M.-W.; Park, K.; Baek, M.-H.; Lee, J.; Park, B.-G. A Low-Energy High-Density Capacitor-Less I&F Neuron Circuit Using Feedback FET Co-Integrated With CMOS. IEEE J. Electron Devices Soc. 2019, 7, 1080–1084. [Google Scholar] [CrossRef]
- Woo, S.; Cho, J.; Lim, D.; Park, Y.-S.; Cho, K.; Kim, S. Implementation and Characterization of an Integrate-and-Fire Neuron Circuit Using a Silicon Nanowire Feedback Field-Effect Transistor. IEEE Trans. Electron Devices 2020, 67, 2995–3000. [Google Scholar] [CrossRef]
- Singh, D.; Patil, G.C. Performance Analysis of Feedback Field-Effect Transistor Based Biosensor. IEEE Sens. J. 2020, 20, 13269–13276. [Google Scholar] [CrossRef]
- Silvaco Int. ATLAS ver. 5. 30. 0. R Manual; Silvaco Int.: Santa Clara, CA, USA, 2015. [Google Scholar]
- Martinie, S.; Lacord, J.; Lee, K.; Bawedin, M.; Cristoloveanu, S. Pragmatic Z2-FET compact model including DC and 1T-DRAM memory operation. Solid State Electron. 2021, 179, 107960. [Google Scholar] [CrossRef]
- Martinie, S.; Lacord, J.; Rozeau, O.; Parihar, M.-S.; Lee, K.; Bawedin, M.; Cristoloveanu, S.; Taur, Y.; Barbe, J.-C. Z2-FET SPICE model: DC and memory operation. In Proceedings of the 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Burlingame, CA, USA, 16–19 October 2017. [Google Scholar] [CrossRef]
- Lacord, J.; Martinie, S.; Parihar, M.-S.; Lee, K.; Bawedin, M.; Cristoloveanu, S.; Taur, Y.; Barbé, J.-C. Z2-FET DC hysteresis: Deep understanding and preliminary model. In Proceedings of the 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kamakura, Japan, 7–9 September 2017; pp. 321–324. [Google Scholar]
- Kwon, M.-W.; Park, K.; Baek, M.-H.; Hwang, S.; Jang, T.; Park, B.-G. Simulation Program with Integrated Circuit Emphasis Compact Modeling of a Dual-Gate Positive-Feedback Field-Effect Transistor for Circuit Simulations. J. Nanosci. Nanotechnol. 2019, 19, 6417–6421. [Google Scholar] [CrossRef] [PubMed]
- Taur, Y.; Lacord, J.; Singh Parihar, M.; Wan, J.; Martinie, S.; Lee, K.-H.; Bawedin, M.; Barbe, J.-C.; Cristoloveanu, S. A comprehensive model on field-effect pnpn devices (Z2-FET). Solid State Electron. 2017, 134, 1–8. [Google Scholar] [CrossRef]
- Hu, C.; Niknejad, A.; Sriramkumar, V.; Lu, D.; Chauhan, Y.; Kahm, M.; Sachid, A. BSIM-IMG: A Turnkey compact model for fully depleted technologies. In Proceedings of the 2012 IEEE International SOI Conference (SOI), Napa, CA, USA, 1–4 October 2012; pp. 1–24. [Google Scholar] [CrossRef]
- Silvaco Int. SPICE Models Manual; Silvaco Int.: Santa Clara, CA, USA, 2015. [Google Scholar]
- Silvaco Int. SmartSpice ver. 4. 44. 3. R Manual; Silvaco Int.: Santa Clara, CA, USA, 2015. [Google Scholar]
Parameters | Description | Value/Unit |
---|---|---|
Ldrain | Length of drain region | 30 nm |
Lgc | Length of gated channel region/P+ region | 40 nm |
Lugc | Length of ungated channel region/N+ region | 40 nm |
Lsource | Length of source region | 30 nm |
Tsi | Thickness of silicon body | 15 nm |
Tox | Thickness of oxide | 3 nm |
P+ region doping concentration | ||
N+ region doping concentration | ||
ΦN | Gate work function of N-type FBFET | 4.6 eV |
Parameters | Unit | Description | Value |
---|---|---|---|
BSIM-IMG model (Level = 301) | |||
L | m | Gate length | 40 × 10−9 |
W | m | Gate width | 1 × 10−6 |
DVT0 | - | SCE coefficient | 29.2 |
DVT1 | - | SCE exponent coefficient | 1.0 |
VSAT | m/s | Saturation velocity in the saturation region | 1 × 104 |
AVSAT | - | Saturation velocity in the saturation region for short channel devices | 4 × 103 |
VSAT1 | m/s | Saturation velocity in the linear region | 5 × 104 |
AVSAT1 | - | Saturation velocity in the linear region for short channel devices | 4 × 105 |
PTWG | 1/V2 | Correction factor for velocity | 2.8 |
U0 | m2/V·s | Low field mobility | 5 × 10−3 |
PCLM | - | Channel length modulation (CLM) parameter | 0.035 |
APCLM | - | Channel length modulation (CLM) parameter for short channel devices | 0.98 |
RDSW | Ω·μm | Zero bias S/D extension resistance per unit width | 0.1 |
PDIBL1 | - | Parameter for DIBL effect on Rout | 0.9 |
PDIBL2 | - | Parameter for DIBL effect on Rout | 2 × 10−4 |
Diode model (Level = 3) | |||
L | m | Length of diode | 70 × 10−9 |
W | m | Width of diode | 1 × 10−6 |
IS | A/m2 | Saturation current | 1 × 10−12 |
ISW | A/m2 | Sidewall saturation current | 1 × 10−14 |
RS | Ω·m2 | Ohmic resistance | 3 × 10−11 |
N | - | Emission coefficient | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.H.; Yu, Y.S. Macro-Modeling for N-Type Feedback Field-Effect Transistor for Circuit Simulation. Micromachines 2021, 12, 1174. https://doi.org/10.3390/mi12101174
Oh JH, Yu YS. Macro-Modeling for N-Type Feedback Field-Effect Transistor for Circuit Simulation. Micromachines. 2021; 12(10):1174. https://doi.org/10.3390/mi12101174
Chicago/Turabian StyleOh, Jong Hyeok, and Yun Seop Yu. 2021. "Macro-Modeling for N-Type Feedback Field-Effect Transistor for Circuit Simulation" Micromachines 12, no. 10: 1174. https://doi.org/10.3390/mi12101174
APA StyleOh, J. H., & Yu, Y. S. (2021). Macro-Modeling for N-Type Feedback Field-Effect Transistor for Circuit Simulation. Micromachines, 12(10), 1174. https://doi.org/10.3390/mi12101174