Challenges for Pulsed Laser Deposition of FeSe Thin Films
Abstract
:1. Introduction
2. Methods
2.1. Thin Film Deposition
2.2. Characterization
3. Results and Discussion
3.1. FeSe/Mica
3.2. Effects of Pre-Annealing and Post-Annealing in UHV and Se Vapor
3.2.1. FeSe/MgO
3.2.2. FeSe/Fe/MgO
3.2.3. FeSe/Mica
3.3. Fe Overlayers: Fe/FeSe/MgO
3.4. Oxidization of Fe Buffers in FeSe/Fe/MgO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haindl, S.; Kidszun, M.; Oswald, S.; Hess, C.; Büchner, B.; Kölling, S.; Wilde, L.; Thersleff, T.; Yurchenko, V.V.; Jourdan, M.; et al. Thin Film Growth of Fe-Based Superconductors: From Fundamental Properties to Functional Devices. A Comparative Review. Rep. Prog. Phys. 2014, 77, 046502. [Google Scholar] [CrossRef]
- Haindl, S. Iron-Based Superconducting Thin Films, 1st ed.; Springer International Publishing: Berlin, Germany, 2021. [Google Scholar]
- Han, Y.; Li, W.Y.; Cao, L.X.; Zhang, S.; Xu, B.; Zhao, B.R. Preparation and Superconductivity of Iron Selenide Thin Films. J. Phys. Condens. Matter 2009, 21, 235702. [Google Scholar] [CrossRef]
- Wu, M.K.; Hsu, F.C.; Yeh, K.W.; Huang, T.W.; Luo, J.Y.; Wang, M.J.; Chang, H.H.; Chen, T.K.; Rao, S.M.; Mok, B.H.; et al. The Development of the Superconducting PbO-Type β-FeSe and Related Compounds. Phys. C Supercond. 2009, 469, 340–349. [Google Scholar] [CrossRef]
- Chen, T.-K.; Luo, J.-Y.; Ke, C.-T.; Chang, H.-H.; Huang, T.-W.; Yeh, K.-W.; Chang, C.-C.; Hsu, P.-C.; Wu, C.-T.; Wang, M.-J.; et al. Low-Temperature Fabrication of Superconducting FeSe Thin Films by Pulsed Laser Deposition. Thin Solid Films 2010, 519, 1540–1545. [Google Scholar] [CrossRef]
- Harris, S.B.; Camata, R.P. Double Epitaxy of Tetragonal and Hexagonal Phases in the FeSe System. J. Cryst. Growth 2019, 514, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Song, C.-L.; Wang, Y.-L.; Jiang, Y.-P.; Li, Z.; Wang, L.; He, K.; Chen, X.; Ma, X.-C.; Xue, Q.-K. Molecular-Beam Epitaxy and Robust Superconductivity of Stoichiometric FeSe Crystalline Films on Bilayer Graphene. Phys. Rev. B 2011, 84, 020503. [Google Scholar] [CrossRef] [Green Version]
- Schneider, R.; Zaitsev, A.G.; Fuchs, D.; Löhneysen, H. Superconductor-Insulator Quantum Phase Transition in Disordered FeSe Thin Films. Phys. Rev. Lett. 2012, 108, 257003. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Zaitsev, A.G.; Fuchs, D.; Fromknecht, R. Analysis of Superconducting FeSe Thin Films Deposited by a Sputtering Technique. Supercond. Sci. Technol. 2013, 26, 055014. [Google Scholar] [CrossRef]
- Takemura, Y.; Suto, H.; Honda, N.; Kakuno, K.; Saito, K. Characterization of FeSe Thin Films Prepared on GaAs Substrate by Selenization Technique. J. Appl. Phys. 1998, 81, 5177. [Google Scholar] [CrossRef]
- Yang, R.; Luo, W.; Chi, S.; Bonn, D.; Xia, G.M. The Stability of Exfolicated FeSe Nanosheets During In-Air Device Fabrication Processes. IEEE Trans. Nanotechnol. 2019, 18, 37–41. [Google Scholar] [CrossRef]
- Wang, Q.-Y.; Li, Z.; Zhang, W.-H.; Zhang, Z.-C.; Zhang, J.-S.; Li, W.; Ding, H.; Ou, Y.-B.; Deng, P.; Chang, K.; et al. Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zhang, W.; Mou, D.; He, J.; Ou, Y.-B.; Wang, Q.-Y.; Li, Z.; Wang, L.; Zhao, L.; He, S.; et al. Electronic Origin of High-Temperature Superconductivity in Single-Layer FeSe Superconductor. Nat. Commun. 2012, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Zhang, Y.; Xia, M.; Ye, Z.; Chen, F.; Xie, X.; Peng, R.; Xu, D.; Fan, Q.; Xu, H.; et al. Interface-Induced Superconductivity and Strain-Dependent Spin Density Waves in FeSe/SrTiO3 Thin Films. Nat. Mater. 2013, 12, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; He, J.; Zhang, W.; Zhao, L.; Liu, D.; Liu, X.; Mou, D.; Ou, Y.-B.; Wang, Q.-Y.; Li, Z.; et al. Phase Diagram and Electronic Indication of High-Temperature Superconductivity at 65 K in Single-Layer FeSe Films. Nat. Mater. 2013, 12, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Schmitt, F.T.; Moore, R.G.; Johnston, S.; Cui, Y.-T.; Li, W.; Yi, M.; Liu, Z.K.; Hashimoto, M.; Zhang, Y.; et al. Interfacial Mode Coupling as the Origin of the Enhancement of Tc in FeSe Films on SrTiO3. Nature 2014, 515, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Cui, J.H.; Xiang, Z.J.; Shang, C.; Wang, N.Z.; Ye, G.J.; Luo, X.G.; Wu, T.; Sun, Z.; Chen, X.H. Evolution of High-Temperature Superconductivity from a Low-Tc Phase Tuned by Carrier Concentration in FeSe Thin Flakes. Phys. Rev. Lett. 2016, 116, 077002. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Ma, Z.; Patel, D.; Sang, L.; Cai, C.; Shahriar Al Hossain, M.; Cheng, Z.; Wang, X.; Dou, S.X. The Interface Structure of FeSe Thin Film on CaF2 Substrate and Its Influence on the Superconducting Performance. ACS Appl. Mater. Interfaces 2017, 9, 37446–37453. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Yuan, J.; He, G.; Hu, W.; Lin, Z.; Li, D.; Jiang, X.; Huang, Y.; Ni, S.; Li, J.; et al. Tunable Critical Temperature for Superconductivity in FeSe Thin Films by Pulsed Laser Deposition. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef]
- Shiogai, J.; Ito, Y.; Mitsuhashi, T.; Nojima, T.; Tsukazaki, A. Electric-Field-Induced Superconductivity in Electrochemically Etched Ultrathin FeSe Films on SrTiO3 and MgO. Nat. Phys. 2016, 12, 42–46. [Google Scholar] [CrossRef]
- Obata, Y.; Sato, M.; Kondo, Y.; Yamaguchi, Y.; Karateev, I.; Vasiliev, A.; Haindl, S. Chemical Composition Control at the Substrate Interface as the Key for FeSe Thin Film Growth. arXiv 2020, arXiv:2012.08039. [Google Scholar]
- Nie, Y.F.; Brahimi, E.; Budnick, J.I.; Hines, W.A.; Jain, M.; Wells, B.O. Suppression of Superconductivity in FeSe Films under Tensile Strain. Appl. Phys. Lett. 2009, 94, 242505. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.J.; Luo, J.Y.; Huang, T.W.; Chang, H.H.; Chen, T.K.; Hsu, F.C.; Wu, C.T.; Wu, P.M.; Chang, A.M.; Wu, M.K. Crystal Orientation and Thickness Dependence of the Superconducting Transition Temperature of Tetragonal FeSe1−x Thin Films. Phys. Rev. Lett. 2009, 103, 117002. [Google Scholar] [CrossRef] [Green Version]
- Phan, G.N.; Nakayama, K.; Sugawara, K.; Sato, T.; Urata, T.; Tanabe, Y.; Tanigaki, K.; Nabeshima, F.; Imai, Y.; Maeda, A.; et al. Effects of Strain on the Electronic Structure, Superconductivity, and Nematicity in FeSe Studied by Angle-Resolved Photoemission Spectroscopy. Phys. Rev. B 2017, 95, 224507. [Google Scholar] [CrossRef] [Green Version]
- Nabeshima, F.; Kawai, M.; Ishikawa, T.; Shikama, N.; Maeda, A. Systematic Study on Transport Properties of FeSe Thin Films with Various Degrees of Strain. Jpn. J. Appl. Phys. 2018, 57, 120314. [Google Scholar] [CrossRef]
- Fitriyah, N.; Hong, T.H.; Duy, H.T.; Mi, J.W.; Hsiao, Y.F.; Juang, J.Y. The Effect of Vapor Transport Annealing on FeSe Films Deposited on 2D Material. J. Nano Res. 2020, 62, 8–20. [Google Scholar] [CrossRef]
- Nelson, J.B.; Riley, D.P. An Experimental Investigation of Extrapolation Methods in the Derivation of Accurate Unit-Cell Dimensions of Crystals. Proc. Phys. Soc. 1945, 57, 160. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Wang, H.; Zhang, B.; Qian, X.; Wang, H. Superconducting Iron Chalcogenide Thin Films Integrated on Flexible Mica Substrates. IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Hara, Y.; Deguchi, K.; Tsuda, S.; Yamaguchi, T.; Takeda, K.; Kotegawa, H.; Tou, H.; Takano, Y. Anion Height Dependence of Tc for the Fe-Based Superconductor. Supercond. Sci. Technol. 2010, 23, 054013. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, B.; Jha, R.; Awana, V.P.S. Magnetotransport Studies of FeSe under Hydrostatic Pressure. AIP Adv. 2014, 4, 067139. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Takano, Y. Review of Fe Chalcogenides as the Simplest Fe-Based Superconductor. J. Phys. Soc. Jpn. 2010, 79, 102001. [Google Scholar] [CrossRef] [Green Version]
Tc 90 (K) | Thickness (nm) | Comment | Composition | Method | Ref. | |
---|---|---|---|---|---|---|
Target | Film | |||||
N/A | 400 | With secondary phase Fe7Se8 | Fe1−xCuxSe1−x/2 4 | FeSe, Fe7Se8 | PLD | 6 |
no SC 1 | <20 | N/A | FeSe 4 | N/A | RF sputtering | 8 |
no SC 1 | 50 | epitaxial | N/A | N/A | PLD | 22 |
<2 | >140 | Two domains | FeSe 4 | FeSe1−x | PLD | 4 |
<4 | 18 | N/A | FeSe 4 | FeSe | PLD & post-annealing | 20 |
~5 | 29 | N/A | FeSe 4 | N/A | RF sputtering | 8 |
~5 | 400 | epitaxial | FeSe | FeSe1+x | PLD | 5 |
~7 | 200 | epitaxial | N/A | N/A | PLD | 22 |
<2(LT) 2 7 (HT) 3 | 140 | Different epitaxy for LT and HT | FeSe1−x | FeSe1−x | PLD | 23 |
~8 | 160 | N/A | FeSe0.95 | N/A | PLD | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obata, Y.; Karateev, I.A.; Pavlov, I.; Vasiliev, A.L.; Haindl, S. Challenges for Pulsed Laser Deposition of FeSe Thin Films. Micromachines 2021, 12, 1224. https://doi.org/10.3390/mi12101224
Obata Y, Karateev IA, Pavlov I, Vasiliev AL, Haindl S. Challenges for Pulsed Laser Deposition of FeSe Thin Films. Micromachines. 2021; 12(10):1224. https://doi.org/10.3390/mi12101224
Chicago/Turabian StyleObata, Yukiko, Igor A. Karateev, Ivan Pavlov, Alexander L. Vasiliev, and Silvia Haindl. 2021. "Challenges for Pulsed Laser Deposition of FeSe Thin Films" Micromachines 12, no. 10: 1224. https://doi.org/10.3390/mi12101224
APA StyleObata, Y., Karateev, I. A., Pavlov, I., Vasiliev, A. L., & Haindl, S. (2021). Challenges for Pulsed Laser Deposition of FeSe Thin Films. Micromachines, 12(10), 1224. https://doi.org/10.3390/mi12101224