Oxygen Generation Using Catalytic Nano/Micromotors
Abstract
:Author Contributions
Funding
Conflicts of Interest
References
- Ward, K.R.; Huvard, G.S.; McHugh, M.; Mallepally, R.R.; Imbruce, R.J.R.C. Chemical oxygen generation. Respir. Care 2013, 58, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Textbook Equity Edition. Anatomy and Physiology; Openstax College: Houston, TX, USA, 2014; Volume 2. [Google Scholar]
- Mujtaba, J.; Sun, H.; Huang, G.; Molhave, K.; Liu, Y.; Zhao, Y.; Wang, X.; Xu, S.; Zhu, J. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials. Sci. Rep. 2016, 6, 20592. [Google Scholar] [CrossRef]
- Weisel, C.P. Assessing exposure to air toxics relative to asthma. Environ. Health Perspect. 2002, 110, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Ghorani-Azam, A.; Sepahi, S.; Riahi-Zanjani, B.; Ghamsari, A.A.; Mohajeri, S.A.; Balali-Mood, M. Plant toxins and acute medicinal plant poisoning in children: A systematic literature review. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2018, 23, 26. [Google Scholar] [CrossRef]
- Molina, M.J.; Molina, L.T. Megacities and atmospheric pollution. J. Air Waste Manag. Assoc. 2004, 54, 644–680. [Google Scholar] [CrossRef] [PubMed]
- Sardesai, I.; Grover, J.; Garg, M.; Nanayakkara, P.; Di Somma, S.; Paladino, L.; Anderson, H.L., III; Gaieski, D.; Galwankar, S.C.; Stawicki, S.P. Short term home oxygen therapy for COVID-19 patients: The COVID-HOT algorithm. J. Fam. Med. Prim. Care 2020, 9, 3209. [Google Scholar]
- Anderson, T. COVID 19 and the oxygen bottleneck. Bull. World Health Organ. 2020, 98, 586–587. [Google Scholar]
- Dondorp, A.M.; Hayat, M.; Aryal, D.; Beane, A.; Schultz, M.J. Respiratory support in COVID-19 patients, with a focus on resource-limited settings. Am. J. Trop. Med. Hyg. 2020, 102, 1191–1197. [Google Scholar] [CrossRef]
- Zenewicz, L.A. Oxygen levels and immunological studies. Front. Immunol. 2017, 8, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loer, S.A.; Scheeren, T.W.; Tarnow, J. How much oxygen does the human lung consume? Anesthesiol. J. Am. Soc. Anesthesiol. 1997, 86, 532–537. [Google Scholar] [CrossRef]
- Chatburn, R.L.; Williams, T.J. Performance comparison of 4 portable oxygen concentrators. Respir. Care 2010, 55, 433–442. [Google Scholar] [PubMed]
- Allam, R.J. Improved oxygen production technologies. Energy Procedia 2009, 1, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Dogutan, D.K.; Nocera, D.G. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 2019, 52, 3143–3148. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Hammarström, L.; Åkermark, B.; Styring, S. Towards artificial photosynthesis: Ruthenium–manganese chemistry for energy production. Chem. Soc. Rev. 2001, 30, 36–49. [Google Scholar] [CrossRef]
- Karkas, M.D.; Johnston, E.V.; Verho, O.; Åkermark, B.R. Artificial photosynthesis: From nanosecond electron transfer to catalytic water oxidation. Acc. Chem. Res. 2014, 47, 100–111. [Google Scholar] [CrossRef]
- Divanis, S.; Kutlusoy, T.; Boye, I.M.I.; Man, I.C.; Rossmeisl, J. Oxygen evolution reaction: A perspective on a decade of atomic scale simulations. Chem. Sci. 2020, 11, 2943–2950. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.R.; Kothare, M.V.; Sircar, S. Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept. AIChE J. 2014, 60, 3330–3335. [Google Scholar] [CrossRef]
- Cooper, G.M. The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000. [Google Scholar]
- Sustmann, R.; Korth, H.-G.; Kobus, D.; Baute, J.; Seiffert, K.-H.; Verheggen, E.; Bill, E.; Kirsch, M.; de Groot, H. FeIII complexes of 1, 4, 8, 11-tetraaza [14] annulenes as catalase mimics. Inorg. Chem. 2007, 46, 11416–11430. [Google Scholar] [CrossRef]
- Osbon, Y.; Kumar, M. Biocatalysis and Strategies for Enzyme Improvement. In Biophysical Chemistry-Advance Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes. J. Am. Chem. Soc. 2011, 133, 11862–11864. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Moo, J.G.S.; Pumera, M. From nanomotors to micromotors: The influence of the size of an autonomous bubble-propelled device upon its motion. ACS Nano 2016, 10, 5041–5050. [Google Scholar] [CrossRef]
- Li, J.; Rozen, I.; Wang, J. Rocket science at the nanoscale. ACS Nano 2016, 10, 5619–5634. [Google Scholar] [CrossRef] [Green Version]
- Teo, W.Z.; Wang, H.; Pumera, M. Beyond platinum: Silver-catalyst based bubble-propelled tubular micromotors. Bulg. Chem. Commun. 2016, 52, 4333–4336. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; D’Agostino, M.; Garcia-Gradilla, V.; Orozco, J.; Wang, J. Multi-fuel driven janus micromotors. Small 2013, 9, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, A.l.M.; German, S.R.; Ren, H.; Van Der Meer, D.; Lohse, D.; Edwards, M.A.; White, H.S. The nucleation rate of single O2 nanobubbles at Pt nanoelectrodes. Langmuir 2018, 34, 7309–7318. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.; Zhao, Y. Catalytic nanomotors: Fabrication, mechanism, and applications. Front. Mater. Sci. 2011, 5, 25–39. [Google Scholar] [CrossRef]
- Chi, Q.; Wang, Z.; Tian, F.; You, J.a.; Xu, S. A Review of Fast Bubble-Driven Micromotors Powered by Biocompatible Fuel: Low-Concentration Fuel, Bioactive Fluid and Enzyme. Micromachines 2018, 9, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Londhe, V.; Sharma, P. Unfolding the future: Self-controlled catalytic nanomotor in healthcare system. Mater. Sci. Eng. C 2020, 117, 111330. [Google Scholar] [CrossRef]
- Kim, K.; Guo, J.; Liang, Z.X.; Zhu, F.Q.; Fan, D.L. Man-made rotary nanomotors: A review of recent developments. Nanoscale 2016, 8, 10471–10490. [Google Scholar] [CrossRef] [Green Version]
- Medina-Sánchez, M.; Xu, H.; Schmidt, O.G. Micro- and nano-motors: The new generation of drug carriers. Ther. Deliv. 2018, 9, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Naeem, S.; Naeem, F.; Manjare, M.; Liao, F.; Bolaños Quiñones, V.; Huang, G.; Li, Y.; Zhang, J.; Solovev, A.; Mei, Y. Tubular catalytic micromotors in transition from unidirectional bubble sequences to more complex bidirectional motion. Appl. Phys. Lett. 2019, 114, 033701. [Google Scholar] [CrossRef]
- Jin, L.-Z.; Wang, S.; Liu, S.-C.; Zhang, Z. Development of a low oxygen generation rate chemical oxygen generator for emergency refuge spaces in underground mines. Combust. Sci. Technol. 2015, 187, 1229–1239. [Google Scholar] [CrossRef]
- Pollock, N.W.; Natoli, M.J. Chemical oxygen generation: Evaluation of the green dot systems, inc portable, nonpressurized emOx device. Wilderness Environ. Med. 2010, 21, 244–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, N.W.; Hobbs, G.W. Evaluation of the System O2 Inc portable nonpressurized oxygen delivery system. Wilderness Environ. Med. 2002, 13, 253–255. [Google Scholar] [CrossRef]
- Dingley, J.; Williams, D.; Douglas, P.; Douglas, M.; Douglas, J. The development and evaluation of a non-pressurised, chemical oxygen reaction generation vessel and breathing system providing emergency oxygen for an extended duration. Anaesthesia 2016, 71, 1464–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, L.; Zhao, T.; Yan, X.; Zhou, X.; Tan, P. The dual role of hydrogen peroxide in fuel cells. Sci. Bull. 2015, 60, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Solovev, A.A.; Sanchez, S.; Mei, Y.; Schmidt, O.G. Tunable catalytic tubular micro-pumps operating at low concentrations of hydrogen peroxide. Phys. Chem. Chem. Phys. 2011, 13, 10131–10135. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wang, J.; Liu, Z.; Zhou, D.; Tian, Z.; Xu, B.; Li, L.; Mei, Y. Rocket-inspired tubular catalytic microjets with grating-structured walls as guiding empennages. Nanoscale 2017, 9, 18590–18596. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Wang, Y.; Xu, D.; Liang, C.; Guo, J.; Ma, X. Biocompatibility of artificial micro/nanomotors for use in biomedicine. Nanoscale 2019, 11, 14099–14112. [Google Scholar] [CrossRef]
- Panda, A.; Reddy, A.S.; Venkateswarlu, S.; Yoon, M. Bio-inspired self-propelled diatom micromotor by catalytic decomposition of H2O2 under low fuel concentration. Nanoscale 2018, 10, 16268–16277. [Google Scholar] [CrossRef]
- Strykanova, V.V.; Gulina, L.B.; Tolstoy, V.P.; Tolstobrov, E.V.; Danilov, D.V.; Skvortsova, I. Synthesis of the FeOOH Microtubes with Inner Surface Modified by Ag Nanoparticles. ACS Omega 2020, 5, 15728–15733. [Google Scholar] [CrossRef]
- Naeem, S.; Naeem, F.; Liu, J.; Quiñones, V.A.B.; Zhang, J.; He, L.; Huang, G.; Solovev, A.A.; Mei, Y. Oxygen Microbubble Generator Enabled by Tunable Catalytic Microtubes. Chem. Asian J. 2019, 14, 2431–2434. [Google Scholar] [CrossRef]
- Li, X.; Xiao, B.; Wu, M.; Wang, L.; Chen, R.; Wei, Y.; Liu, H. In-situ generation of multi-homogeneous/heterogeneous Fe-based Fenton catalysts toward rapid degradation of organic pollutants at near neutral pH. Chemosphere 2020, 245, 125663. [Google Scholar] [CrossRef]
- Mahmoud Kotb, R.; Shaker, R.N.; Elsayed, N. Neoteric Approach to One-Step Bleaching and Antibacterial Finishing of Cotton Fabric. Int. J. Appl. Chem. 2015, 11, 10. [Google Scholar]
- Surmacz, P.; Kostecki, M.; Gut, Z.; Olszyna, A. Aluminum Oxide–Supported Manganese Oxide Catalyst for a 98% Hydrogen Peroxide Thruster. J. Propuls. Power 2019, 35, 614–623. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Mathur, A.; Wang, Y.; Maheshwari, V.; Su, H.; Liu, J. Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: Inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 2019, 11, 17841–17850. [Google Scholar] [CrossRef]
- Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jianlong Wang, S.W. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar]
- Jildeh, Z.B.; Kirchner, P.; Baltes, K.; Wagner, P.H.; Schöning, M.J. Development of an in-line evaporation unit for the production of gas mixtures containing hydrogen peroxide–numerical modeling and experimental results. Int. J. Heat Mass Transf. 2019, 143, 118519. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Cheng, M.J.; Lu, Q. Tailoring the Electrochemical Production of H2O2: Strategies for the Rational Design of High-Performance Electrocatalysts. Small 2020, 16, 1902845. [Google Scholar]
- Guseinov, S.L.; Fedorov, S.; Kosykh, V.; Storozhenko, P. Hydrogen Peroxide Decomposition Catalysts Used in Rocket Engines. Russ. J. Appl. Chem. 2020, 93, 467–487. [Google Scholar] [CrossRef]
- An, S.; Kwon, S. Scaling and evaluation of Pt/Al2O3 catalytic reactor for hydrogen peroxide monopropellant thruster. J. Propuls. Power 2009, 25, 1041–1045. [Google Scholar] [CrossRef]
- Kang, H.; Lee, D.; Kang, S.; Kwon, S. Effect of H2O2 injection patterns on catalyst bed characteristics. Acta Astronaut. 2017, 130, 75–83. [Google Scholar] [CrossRef]
- Lee, S.-L.; Lee, C.-W. Performance characteristics of silver catalyst bed for hydrogen peroxide. Aerosp. Sci. Technol. 2009, 13, 12–17. [Google Scholar] [CrossRef]
- Jung, W.; Baek, S.; Kwon, T.; Park, J.; Kwon, S. Demonstration of ethanol-blended hydrogen peroxide gas generator for ramjet combustor flow simulation. J. Propuls. Power 2018, 34, 591–599. [Google Scholar] [CrossRef]
- Micoli, L.; Turco, M. Decomposition of H2O2 on monolithic MnOx/ZrO2 catalysts for aerospace application. Chem. Eng. Trans. 2015, 43, 1819–1824. [Google Scholar]
- Bonifacio, S.; Sorge, A.R.; Krejci, D.; Woschnak, A.; Scharlemann, C. Novel manufacturing method for hydrogen peroxide catalysts: A performance verification. J. Propuls. Power 2014, 30, 299–308. [Google Scholar] [CrossRef]
- Kang, S.; Lee, D.; Kwon, S. Lanthanum doping for longevity of alumina catalyst bed in hydrogen peroxide thruster. Aerosp. Sci. Technol. 2015, 46, 197–203. [Google Scholar] [CrossRef]
- Han, G.; Bae, M.; Cho, S.; Bae, J. Start-up strategy of a diesel reformer using the decomposition heat of hydrogen peroxide for subsea applications. J. Power Sources 2020, 448, 227465. [Google Scholar] [CrossRef]
- Chen, B.; Gsalla, A.; Gaur, A.; Lui, Y.H.; Tang, X.; Geder, J.; Pruessner, M.; Melde, B.J.; Medintz, I.L.; Shafei, B. Porous Wood Monoliths Decorated with Platinum Nano-Urchins as Catalysts for Underwater Micro-Vehicle Propulsion via H2O2 Decomposition. ACS Appl. Nano Mater. 2019, 2, 4143–4149. [Google Scholar] [CrossRef] [Green Version]
- Pirault-Roy, L.; Kappenstein, C.; Guerin, M.; Eloirdi, R.; Pillet, N. Hydrogen peroxide decomposition on various supported catalysts effect of stabilizers. J. Propuls. Power 2002, 18, 1235–1241. [Google Scholar] [CrossRef]
- Jildeh, Z.B.; Oberländer, J.; Kirchner, P.; Wagner, P.H.; Schöning, M.J. Thermocatalytic behavior of manganese (IV) oxide as nanoporous material on the dissociation of a gas mixture containing hydrogen peroxide. Nanomaterials 2018, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Jo, S. Response characteristics of H2O2 monopropellant thrusters with MnO2-mixed PbO catalyst. Aerosp. Sci. Technol. 2017, 60, 1–8. [Google Scholar] [CrossRef]
- Jing, X.; Xu, Y.; Liu, D.; Wu, Y.; Zhou, N.; Wang, D.; Yan, K.; Meng, L. Intelligent nanoflowers: A full tumor microenvironment-responsive multimodal cancer theranostic nanoplatform. Nanoscale 2019, 11, 15508–15518. [Google Scholar] [CrossRef] [PubMed]
- Pędziwiatr, P. Decomposition of hydrogen peroxide-kinetics and review of chosen catalysts. Acta Innov. 2018, 26, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Serra-Maia, R.; Bellier, M.; Chastka, S.; Tranhuu, K.; Subowo, A.; Rimstidt, J.D.; Usov, P.M.; Morris, A.J.; Michel, F.M. Mechanism and kinetics of hydrogen peroxide decomposition on platinum nanocatalysts. ACS Appl. Mater. Interfaces 2018, 10, 21224–21234. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, L.; Shen, X.; Gao, X.; Chen, Y.; Liu, H.; Liu, Y.; Yin, D.; Liu, Y.; Xu, W. Graphdiyne-templated palladium-nanoparticle assembly as a robust oxygen generator to attenuate tumor hypoxia. Nano Today 2020, 34, 100907. [Google Scholar] [CrossRef]
- Mitra, S.; Roy, N.; Maity, S.; Bandyopadhyay, D. Multimodal chemo-/magneto-/phototaxis of 3G CNT-bots to power fuel cells. Microsyst. Nanoeng. 2020, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Do, S.-H.; Batchelor, B.; Lee, H.-K.; Kong, S.-H. Hydrogen peroxide decomposition on manganese oxide (pyrolusite): Kinetics, intermediates, and mechanism. Chemosphere 2009, 75, 8–12. [Google Scholar] [CrossRef]
- van der Linde, P.; Peñas-López, P.; Soto, Á.M.; van der Meer, D.; Lohse, D.; Gardeniers, H.; Rivas, D.F. Gas bubble evolution on microstructured silicon substrates. Energy Environ. Sci. 2018, 11, 3452–3462. [Google Scholar] [CrossRef] [Green Version]
- Darband, G.B.; Aliofkhazraei, M.; Shanmugam, S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renew. Sustain. Energy Rev. 2019, 114, 109300. [Google Scholar] [CrossRef]
- Huang, C.; Guo, Z. The wettability of gas bubbles: From macro behavior to nano structures to applications. Nanoscale 2018, 10, 19659–19672. [Google Scholar] [CrossRef]
- Song, Q.; Xue, Z.; Liu, C.; Qiao, X.; Liu, L.; Huang, C.; Liu, K.; Li, X.; Lu, Z.; Wang, T. General Strategy to Optimize Gas Evolution Reaction via Assembled Striped-Pattern Superlattices. J. Am. Chem. Soc. 2019, 142, 1857–1863. [Google Scholar] [CrossRef]
- Lu, Z.; Li, Y.; Lei, X.; Liu, J.; Sun, X. Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes. Mater. Horiz. 2015, 2, 294–298. [Google Scholar] [CrossRef]
- Moraila, C.L.; Ruiz-Cabello, F.J.M.; Cabrerizo-Vílchez, M.; Rodríguez-Valverde, M.Á. Wetting transitions on rough surfaces revealed with captive bubble experiments. The role of surface energy. J. Colloid Interface Sci. 2019, 539, 448–456. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, P.; Wang, J.; Jiang, L. Superwettability of gas bubbles and its application: From bioinspiration to advanced materials. Adv. Mater. 2017, 29, 1703053. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Guo, L.; Cao, Z. Diffusion-controlled growth of oxygen bubble evolved from nanorod-array TiO2 photoelectrode. Adv. Condens. Matter Phys. 2014, 2014, 970891. [Google Scholar] [CrossRef] [Green Version]
- Kadyk, T.; Bruce, D.; Eikerling, M. How to enhance gas removal from porous electrodes? Sci. Rep. 2016, 6, 38780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotp, Y.H.; Souaya, E.R.; Guindy, K.A.; Ibrahim, R.G. Development the sorption behavior of nanocomposite Mg/Al LDH by chelating with different monomers. Compos. Part B Eng. 2019, 175, 107131. [Google Scholar]
- Wang, Y.; Chen, J.; Jiang, Y.; Wang, X.; Wang, W. Label-free optical imaging of the dynamic stick–slip and migration of single sub-100-nm surface nanobubbles: A superlocalization approach. Anal. Chem. 2019, 91, 4665–4671. [Google Scholar] [CrossRef] [PubMed]
- Banuprasad, T.N.; Vinay, T.V.; Subash, C.K.; Varghese, S.; George, S.D.; Varanakkottu, S.N. Fast transport of water droplets over a thermo-switchable surface using rewritable wettability gradient. ACS Appl. Mater. Interfaces 2017, 9, 28046–28054. [Google Scholar] [CrossRef]
- George, J.E.; Chidangil, S.; George, S.D. Recent progress in fabricating superaerophobic and superaerophilic surfaces. Adv. Mater. Interfaces 2017, 4, 1601088. [Google Scholar] [CrossRef]
- Belova, V.; Gorin, D.A.; Shchukin, D.G.; Moöhwald, H. Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces. ACS Appl. Mater. Interfaces 2011, 3, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-F.; Chen, M.-Z.; Yang, S.-H.; Jeng, S.-C. Tunable surface wettability of ZnO nanoparticle arrays for controlling the alignment of liquid crystals. ACS Appl. Mater. Interfaces 2015, 7, 9619–9624. [Google Scholar] [CrossRef] [PubMed]
- Belova, V.; Gorin, D.A.; Shchukin, D.G.; Möhwald, H. Selective ultrasonic cavitation on patterned hydrophobic surfaces. Angew. Chem. Int. Ed. 2010, 49, 7129–7133. [Google Scholar] [CrossRef] [PubMed]
- Belova-Magri, V.; Brotchie, A.; Cairoós, C.; Mettin, R.; Moöhwald, H. Micropatterning for the control of surface cavitation: Visualization through high-speed imaging. ACS Appl. Mater. Interfaces 2015, 7, 4100–4108. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, S.; Van Kruijsdijk, C.; Sanyal, S.; Harvey, A.D. Nucleation and growth of a nanobubble on rough surfaces. Langmuir 2020, 36, 4108–4115. [Google Scholar] [CrossRef]
- Zhou, D.; Li, P.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W.-F.; Sun, X.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817. [Google Scholar] [CrossRef]
- Jones, S.; Evans, G.; Galvin, K. Bubble nucleation from gas cavities—A review. Adv. Colloid Interface Sci. 1999, 80, 27–50. [Google Scholar] [CrossRef]
- Berger, I.M.; Nguyen-Dang, M.E.T. Key Area of Training and Exploratory Focus of Mechanical Engineering at Chemnitz University of Technology—Case Studies for the Development of New Nonlinear Drive Concepts. Available online: https://www.researchgate.net/profile/Maik-Berger-2/publication/331159553_Key_area_of_training_and_exploratory_focus_of_mechanical_engineering_at_Chemnitz_University_of_Technology_-_Case_studies_for_the_development_of_new_nonlinear_drive_concepts_3rd_National_Conference_on_/links/5c694143a6fdcc404eb63a4d/Key-area-of-training-and-exploratory-focus-of-mechanical-engineering-at-Chemnitz-University-of-Technology-Case-studies-for-the-development-of-new-nonlinear-drive-concepts-3rd-National-Conference-on.pdf (accessed on 8 October 2021).
- Huang, W.; Manjare, M.; Zhao, Y. Catalytic Nanoshell Micromotors. J. Phys. Chem. C 2013, 117, 21590–21596. [Google Scholar] [CrossRef]
- Zhu, H.; Nawar, S.; Werner, J.G.; Liu, J.; Huang, G.; Mei, Y.; Weitz, D.A.; Solovev, A.A. Hydrogel micromotors with catalyst-containing liquid core and shell. J. Phys. Condens. Matter 2019, 31, 214004. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, G.; Pumera, M. Crucial role of surfactants in bubble-propelled microengines. J. Phys. Chem. C 2014, 118, 5268–5274. [Google Scholar] [CrossRef]
- Sebba, F. Microfoams—An unexploited colloid system. J. Colloid Interface Sci. 1971, 35, 643–646. [Google Scholar] [CrossRef]
- Manjare, M.; Yang, B.; Zhao, Y.-P. Bubble driven quasioscillatory translational motion of catalytic micromotors. Phys. Rev. Lett. 2012, 109, 128305. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, N. Size effect in heterogeneous nucleation. J. Chem. Phys. 1958, 29, 572–576. [Google Scholar] [CrossRef]
- Manjare, M.; Yang, B.; Zhao, Y.-P. Bubble-propelled microjets: Model and experiment. J. Phys. Chem. C 2013, 117, 4657–4665. [Google Scholar] [CrossRef]
- Mackrodt, P.-A. Stability of Hagen-Poiseuille flow with superimposed rigid rotation. J. Fluid Mech. 1976, 73, 153–164. [Google Scholar] [CrossRef]
- Silva, C.G.; Bouizi, Y.; Fornes, V.; Garcia, H. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J. Am. Chem. Soc. 2009, 131, 13833–13839. [Google Scholar] [CrossRef] [PubMed]
- Naeem, S.; Naeem, F.; Zhang, J.; Mujtaba, J.; Xu, K.; Huang, G.; Solovev, A.A.; Mei, Y. Parameters Optimization of Catalytic Tubular Nanomembrane-Based Oxygen Microbubble Generator. Micromachines 2020, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Zhang, Y.; Zhu, H.; Ingham, A.; Huang, G.; Mei, Y.; Solovev, A.A. Geometry design, principles and assembly of micromotors. Micromachines 2018, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, S.; Ananth, A.N.; Fomin, V.M.; Viehrig, M.; Schmidt, O.G. Superfast motion of catalytic microjet engines at physiological temperature. J. Am. Chem. Soc. 2011, 133, 14860–14863. [Google Scholar] [CrossRef] [PubMed]
- de la Asunción-Nadal, V.; Jurado-Sánchez, B.; Vázquez, L.; Escarpa, A. Magnetic Fields Enhanced the Performance of Tubular Dichalcogenide Micromotors at Low Hydrogen Peroxide Levels. Chem. Eur. J. 2019, 25, 13157–13163. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, C.; Lin, Z.; Wang, D.; Li, Y.; Yuan, Y.; Zhu, B.; He, Q. Autonomous Motion of Bubble-Powered Carbonaceous Nanoflask Motors. Langmuir 2020, 36, 7039–7045. [Google Scholar] [CrossRef]
- Ye, Y.; Luan, J.; Wang, M.; Chen, Y.; Wilson, D.A.; Peng, F.; Tu, Y. Fabrication of Self-Propelled Micro-and Nanomotors Based on Janus Structures. Chem. Eur. J. 2019, 25, 8663–8680. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Z.; Solovev, A.A.; Huang, G.; Mei, Y. Light-controlled two-dimensional TiO2 plate micromotors. RSC Adv. 2019, 9, 29433–29439. [Google Scholar] [CrossRef] [Green Version]
- Solovev, A.A.; Xi, W.; Gracias, D.H.; Harazim, S.M.; Deneke, C.; Sanchez, S.; Schmidt, O.G. Self-propelled nanotools. ACS Nano 2012, 6, 1751–1756. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, T.; Zheng, M.; Jiang, Z.; Wang, S. Controlled one-sided growth of Janus TiO2/MnO2 nanomotors. Nanotechnology 2019, 30, 315702. [Google Scholar] [CrossRef] [PubMed]
- Paxton, W.F.; Kistler, K.C.; Olmeda, C.C.; Sen, A.; St. Angelo, S.K.; Cao, Y.; Mallouk, T.E.; Lammert, P.E.; Crespi, V.H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431. [Google Scholar] [CrossRef]
- Wang, H.; Gu, X.; Wang, C. Self-Propelling Hydrogel/Emulsion-Hydrogel Soft Motors for Water Purification. ACS Appl. Mater. Interfaces 2016, 8, 9413–9422. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, S.; Soler, L.; Katuri, J. Chemically powered micro-and nanomotors. Angew. Chem. Int. Ed. 2015, 54, 1414–1444. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Büchel, R.; Figi, R.; Zhang, Y.; Bahk, Y.; Ma, J.; Wang, J. High-performance carbon/MnO2 micromotors and their applications for pollutant removal. Chemosphere 2019, 219, 427–435. [Google Scholar] [CrossRef]
- Chen, X.Z.; Hoop, M.; Shamsudhin, N.; Huang, T.; Özkale, B.; Li, Q.; Siringil, E.; Mushtaq, F.; Di Tizio, L.; Nelson, B.J. Hybrid magnetoelectric nanowires for nanorobotic applications: Fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv. Mater. 2017, 29, 1605458. [Google Scholar] [CrossRef]
- Sun, C.; Shi, Q.; Hasan, D.; Yazici, M.S.; Zhu, M.; Ma, Y.; Dong, B.; Liu, Y.; Lee, C. Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors. Nano Energy 2019, 58, 612–623. [Google Scholar] [CrossRef]
- Brooks, A.M.; Tasinkevych, M.; Sabrina, S.; Velegol, D.; Sen, A.; Bishop, K.J. Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis. Nat. Commun. 2019, 10, 495. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Feng, X.; Pei, A.; Kane, C.R.; Tam, R.; Hennessy, C.; Wang, J. Bioinspired helical microswimmers based on vascular plants. Nano Lett. 2014, 14, 305–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Pei, A.; Dong, R.; Wang, J. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J. Am. Chem. Soc. 2014, 136, 2276–2279. [Google Scholar] [CrossRef] [Green Version]
- Palacci, J.; Sacanna, S.; Steinberg, A.P.; Pine, D.J.; Chaikin, P.M. Living crystals of light-activated colloidal surfers. Science 2013, 339, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Son, S.U.; Lee, S.S. A micropump operating with chemically produced oxygen gas. Sens. Actuators A 2004, 111, 8–13. [Google Scholar] [CrossRef]
- Paxton, W.F.; Baker, P.T.; Kline, T.R.; Wang, Y.; Mallouk, T.E.; Sen, A. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 2006, 128, 14881–14888. [Google Scholar] [CrossRef]
- Mou, F.; Li, Y.; Chen, C.; Li, W.; Yin, Y.; Ma, H.; Guan, J. Single-Component TiO2 Tubular Microengines with Motion Controlled by Light-Induced Bubbles. Small 2015, 11, 2564–2570. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, R.; Zhang, Q.; Ren, B. Dye-enhanced self-electrophoretic propulsion of light-driven TiO2–Au Janus micromotors. Nano-Micro Lett. 2017, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Zhang, Q.; Gao, W.; Pei, A.; Ren, B. Highly efficient light-driven TiO2–Au Janus micromotors. ACS Nano 2016, 10, 839–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, B.; Hong, A.; Kang, H.E.; Alcantara, C.; Charreyron, S.; Mushtaq, F.; Pellicer, E.; Buüchel, R.; Sort, J.; Lee, S.S. Multiwavelength light-responsive Au/B-TiO2 janus micromotors. ACS Nano 2017, 11, 6146–6154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Mou, F.; Wu, Z.; Tang, S.; Xie, H.; You, M.; Liang, X.; Xu, L.; Guan, J. Simple-Structured Micromotors Based on Inherent Asymmetry in Crystalline Phases: Design, Large-Scale Preparation, and Environmental Application. ACS Appl. Mater. Interfaces 2019, 11, 16639–16646. [Google Scholar] [CrossRef] [PubMed]
- Safdar, M.; Wani, O.M.; Jaänis, J. Manganese oxide-based chemically powered micromotors. ACS Appl. Mater. Interfaces 2015, 7, 25580–25585. [Google Scholar] [CrossRef]
- Janardan, S.; Suman, P.; Ragul, G.; Anjaneyulu, U.; Shivendu, R.; Dasgupta, N.; Ramalingam, C.; Swamiappan, S.; Vijayakrishna, K.; Sivaramakrishna, A. Assessment on the antibacterial activity of nanosized silica derived from hypercoordinated silicon (iv) precursors. RSC Adv. 2016, 6, 66394–66406. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, S.; Sun, Y.; Fang, X.; Wu, L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012, 41, 4356–4378. [Google Scholar] [CrossRef]
- Ma, X.; Hahn, K.; Sanchez, S. Catalytic mesoporous Janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 2015, 137, 4976–4979. [Google Scholar] [CrossRef]
- Gibbs, J.G.; Fragnito, N.A.; Zhao, Y. Asymmetric Pt/Au coated catalytic micromotors fabricated by dynamic shadowing growth. Appl. Phys. Lett. 2010, 97, 253107. [Google Scholar] [CrossRef]
- Campos, A. Surface-Enhanced Raman Spectroscopy of Analytes in Blood. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2015. [Google Scholar]
- Christensen, J.; Manjavacas, A.; Thongrattanasiri, S.; Koppens, F.H.; Garciía de Abajo, F.J. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 2012, 6, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Pan, Q.; Du, X.; Xu, T.; He, Y.; Zhang, X. Dendritic janus nanomotors with precisely modulated coverages and their effects on propulsion. ACS Appl. Mater. Interfaces 2019, 11, 10426–10433. [Google Scholar] [CrossRef]
- Gao, W.; Liu, M.; Liu, L.; Zhang, H.; Dong, B.; Li, C.Y. One-step fabrication of multifunctional micromotors. Nanoscale 2015, 7, 13918–13923. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Chen, S.; AlTal, F.; Hu, S.; Bouffier, L.; Wantz, G. Bipolar electrode array embedded in a polymer light-emitting electrochemical cell. ACS Appl. Mater. Interfaces 2017, 9, 32405–32410. [Google Scholar] [CrossRef] [PubMed]
- Llopis-Lorente, A.; García-Fernández, A.; Murillo-Cremaes, N.; Hortelão, A.C.; Patiño, T.; Villalonga, R.; Sancenón, F.; Martínez-Máñez, R.; Sánchez, S. Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS Nano 2019, 13, 12171–12183. [Google Scholar] [CrossRef] [PubMed]
- Llopis-Lorente, A.; García-Fernández, A.; Lucena-Sánchez, E.; Díez, P.; Sancenón, F.; Villalonga, R.; Wilson, D.A.; Martínez-Máñez, R. Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au–mesoporous silica nanoparticles for enhanced cargo delivery. Chem. Commun. 2019, 55, 13164–13167. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, X.Q.; Shen, X.; Zhang, R.; Liu, H.; Zhang, Q. Composite Lithium Anodes: A Review of Composite Lithium Metal Anode for Practical Applications. Adv. Mater. Technol. 2020, 5, 2070002. [Google Scholar]
- Villa, K.; Pumera, M. Fuel-free light-driven micro/nanomachines: Artificial active matter mimicking nature. Chem. Soc. Rev. 2019, 48, 4966–4978. [Google Scholar] [CrossRef]
- Giudicatti, S.; Marz, S.M.; Soler, L.; Madani, A.; Jorgensen, M.R.; Sanchez, S.; Schmidt, O.G. Photoactive rolled-up TiO2 microtubes: Fabrication, characterization and applications. J. Mater. Chem. C 2014, 2, 5892–5901. [Google Scholar] [CrossRef] [Green Version]
- Enachi, M.; Guix, M.; Postolache, V.; Ciobanu, V.; Fomin, V.M.; Schmidt, O.G.; Tiginyanu, I. Light-Induced Motion of Microengines Based on Microarrays of TiO2 Nanotubes. Small 2016, 12, 5497–5505. [Google Scholar] [CrossRef]
- Xu, C.; Wang, B.; Sun, S. Dumbbell-like Au–Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009, 131, 4216–4217. [Google Scholar] [CrossRef] [Green Version]
- Yuan, K.; de la Asunción-Nadal, V.; Jurado-Sánchez, B.; Escarpa, A. 2D Nanomaterials Wrapped Janus Micromotors with Built-in Multiengines for Bubble, Magnetic, and Light Driven Propulsion. Chem. Mater. 2020, 32, 1983–1992. [Google Scholar] [CrossRef]
- María-Hormigos, R.; Escarpa, A.; Goudeau, B.; Ravaine, V.; Perro, A.; Kuhn, A. Oscillatory Light-Emitting Biopolymer Based Janus Microswimmers. Adv. Mater. Interfaces 2020, 7, 1902094. [Google Scholar] [CrossRef]
- Moran, J.L. 7 Robotic colloids: Engineered self-propulsion at the microscale. Robot. Syst. Auton. Platf. Adv. Mater. Manuf. 2019, 129–177. [Google Scholar] [CrossRef]
- Vilela, D.; Stanton, M.M.; Parmar, J.; Saánchez, S. Microbots decorated with silver nanoparticles kill bacteria in aqueous media. ACS Appl. Mater. Interfaces 2017, 9, 22093–22100. [Google Scholar] [CrossRef] [PubMed]
- Baraban, L.; Makarov, D.; Schmidt, O.G.; Cuniberti, G.; Leiderer, P.; Erbe, A. Control over Janus micromotors by the strength of a magnetic field. Nanoscale 2013, 5, 1332–1336. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Ge, X.; Xu, B.; Zhang, W.; Qu, L.; Choi, C.-H.; Xu, J.; Zhang, A.; Lee, H. Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 2018, 47, 5646–5683. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, M.-J.; Zhang, S.-Y.; Shi, L.; Yang, Y.-M.; Liu, Z.; Ju, X.-J.; Xie, R.; Wang, W.; Chu, L.-Y. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal–organic frameworks for enhanced synergistic environmental remediation. ACS Appl. Mater. Interfaces 2020, 12, 35120–35131. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Wang, J.; Yu, Y.; Sun, L.; Wang, H.; Xu, H.; Zhao, Y. Composite Multifunctional Micromotors from Droplet Microfluidics. ACS Appl. Mater. Interfaces 2018, 10, 34618–34624. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Lázaro, M. Dual role of hydrogen peroxide in cancer: Possible relevance to cancer chemoprevention and therapy. Cancer Lett. 2007, 252, 1–8. [Google Scholar] [CrossRef]
- Paryab, A.; Hosseini, H.R.M.; Abedini, F.; Dabbagh, A. Synthesis of magnesium-based Janus micromotors capable of magnetic navigation and antibiotic drug incorporation. New J. Chem. 2020, 44, 6947–6957. [Google Scholar] [CrossRef]
- Guix, M.; Mayorga-Martinez, C.C.; Merkoçi, A. Nano/micromotors in (bio) chemical science applications. Chem. Rev. 2014, 114, 6285–6322. [Google Scholar] [CrossRef]
- Kurinomaru, T.; Inagaki, A.; Hoshi, M.; Nakamura, C.; Yamazoe, H. Protein microswimmers capable of delivering cells for tissue engineering applications. Mater. Horiz. 2020, 7, 877–884. [Google Scholar] [CrossRef]
- Zhang, F.; Zhuang, J.; Esteban Fernández de Ávila, B.; Tang, S.; Zhang, Q.; Fang, R.H.; Zhang, L.; Wang, J. A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS Nano 2019, 13, 11996–12005. [Google Scholar] [CrossRef]
- Sengupta, S.; Dey, K.K.; Muddana, H.S.; Tabouillot, T.; Ibele, M.E.; Butler, P.J.; Sen, A. Enzyme molecules as nanomotors. J. Am. Chem. Soc. 2013, 135, 1406–1414. [Google Scholar] [CrossRef]
- Günther, J.-P.; Börsch, M.; Fischer, P. Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy. Acc. Chem. Res. 2018, 51, 1911–1920. [Google Scholar] [CrossRef]
- Günther, J.-P.; Majer, G.; Fischer, P. Absolute diffusion measurements of active enzyme solutions by NMR. J. Chem. Phys. 2019, 150, 124201. [Google Scholar] [CrossRef]
- Dey, K.K.; Zhao, X.; Tansi, B.M.; Méndez-Ortiz, W.J.; Córdova-Figueroa, U.M.; Golestanian, R.; Sen, A. Micromotors powered by enzyme catalysis. Nano Lett. 2015, 15, 8311–8315. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-S.; Xia, H.; Lv, C.; Wang, L.; Dong, W.-F.; Feng, J.; Sun, H.-B. Self-propelled micromotors based on Au–mesoporous silica nanorods. Nanoscale 2015, 7, 11951–11955. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jannasch, A.; Albrecht, U.-R.; Hahn, K.; Miguel-López, A.; Schäffer, E.; Sánchez, S. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Nano Lett. 2015, 15, 7043–7050. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.S.; Kim, H.J.; Gao, C.; Lee, D.; Hammer, D.A. Enzymatically Powered Surface-Associated Self-Motile Protocells. Small 2018, 14, 1801715. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Zhang, X.; Xie, Y.; Wu, J.; Ju, H. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale 2017, 9, 9026–9033. [Google Scholar] [CrossRef] [Green Version]
- Orozco, J.; García-Gradilla, V.; D’Agostino, M.; Gao, W.; Cortes, A.; Wang, J. Artificial enzyme-powered microfish for water-quality testing. ACS Nano 2013, 7, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Zeng, M.; Huang, D.; Wang, P.; King, D.; Peng, B.; Luo, J.; Lei, Q.; Zhang, L.; Wang, L.; Shinde, A. Autonomous catalytic nanomotors based on 2D magnetic nanoplates. ACS Appl. Nano Mater. 2019, 2, 1267–1273. [Google Scholar] [CrossRef]
- Sengupta, S.; Patra, D.; Ortiz-Rivera, I.; Agrawal, A.; Shklyaev, S.; Dey, K.K.; Córdova-Figueroa, U.; Mallouk, T.E.; Sen, A. Self-powered enzyme micropumps. Nat. Chem. 2014, 6, 415. [Google Scholar] [CrossRef]
- Ortiz-Rivera, I.; Shum, H.; Agrawal, A.; Sen, A.; Balazs, A.C. Convective flow reversal in self-powered enzyme micropumps. Proc. Natl. Acad. Sci. USA 2016, 113, 2585–2590. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Rivera, I.; Courtney, T.M.; Sen, A. Enzyme Micropump-Based Inhibitor Assays. Adv. Funct. Mater. 2016, 26, 2135–2142. [Google Scholar] [CrossRef]
- Mujtaba, J.; Liu, J.; Dey, K.K.; Li, T.; Chakraborty, R.; Xu, K.; Makarov, D.; Barmin, R.A.; Gorin, D.A.; Tolstoy, V.P.; et al. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. Adv. Mater. 2021, 33, 2007465. [Google Scholar] [CrossRef]
- Huo, M.; Wang, L.; Chen, Y.; Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, G.; Pumera, M. Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO2 Catalysts. J. Am. Chem. Soc. 2014, 136, 2719–2722. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.L.A.; Lee, D.; Mei, Y.; Weitz, D.A.; Solovev, A.A. Nanoparticle-Shelled Catalytic Bubble Micromotor. Adv. Mater. Interfaces 2020, 7, 1901583. [Google Scholar] [CrossRef]
- Hu, L.; Rehman, S.; Tao, K.; Miao, J. Characterization on Three-Dimensional Trajectory of Disk-Like Gold-Nickel-Platinum Nanomotor Using Digital Holographic Imaging. ChemistrySelect 2018, 3, 9634–9640. [Google Scholar] [CrossRef]
- Hu, S.; Shao, S.; Chen, H.; Sun, J.; Zhai, J.; Zheng, H.; Wan, M.; Liu, Y.; Mao, C.; Zhao, J. Preparation and Properties of Janus Heparin-Loaded Ammoniated-Hollow Mesoporous Silica Nanomotors. J. Phys. Chem. C 2018, 122, 9680–9687. [Google Scholar] [CrossRef]
- Wu, Y.; Si, T.; Gao, C.; Yang, M.; He, Q. Bubble-Pair Propelled Colloidal Kayaker. J. Am. Chem. Soc. 2018, 140, 11902–11905. [Google Scholar] [CrossRef]
- Hu, L.; Tao, K.; Lim, Y.D.; Miao, J.; Kim, Y.J. Self-Steerable Propulsion of Disk-Like Micro-Craft with Dual Off-Center Nanoengines. ACS Appl. Energy Mater. 2019, 2, 1657–1662. [Google Scholar] [CrossRef]
- Cui, X.; Li, J.; Ng, D.H.L.; Liu, J.; Liu, Y.; Yang, W. 3D hierarchical ACFs-based micromotors as efficient photo-Fenton-like catalysts. Carbon 2020, 158, 738–748. [Google Scholar] [CrossRef]
- Moradi, N.; Shamsipur, M.; Taherpour, A.; Rahimdad, N.; Pashabadi, A. Fabrication of Template-Less Self-Propelled Micromotors Based on A Metal-Sandwiched Polytryptophan Body: An Experimental and DFT Study. ChemPlusChem 2020, 85, 1129–1136. [Google Scholar] [CrossRef]
- Wani, O.M.; Safdar, M.; Kinnunen, N.; Jänis, J. Dual Effect of Manganese Oxide Micromotors: Catalytic Degradation and Adsorptive Bubble Separation of Organic Pollutants. Chem. Eur. J. 2016, 22, 1244–1247. [Google Scholar] [CrossRef]
- Mou, F.; Pan, D.; Chen, C.; Gao, Y.; Xu, L.; Guan, J. Magnetically Modulated Pot-Like MnFe2O4 Micromotors: Nanoparticle Assembly Fabrication and their Capability for Direct Oil Removal. Adv. Funct. Mater. 2015, 25, 6173–6181. [Google Scholar] [CrossRef]
- Orozco, J.; Mercante, L.A.; Pol, R.; Merkoçi, A. Graphene-based Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 2016, 4, 3371–3378. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, A.; Wang, F.; Ren, J.; Qu, X. Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters. Chem. Commun. 2016, 52, 5550–5553. [Google Scholar] [CrossRef]
- Wang, H.; Potroz, M.G.; Jackman, J.A.; Khezri, B.; Marić, T.; Cho, N.-J.; Pumera, M. Bioinspired Spiky Micromotors Based on Sporopollenin Exine Capsules. Adv. Funct. Mater. 2017, 27, 1702338. [Google Scholar] [CrossRef]
- Wang, R.; Guo, W.; Li, X.; Liu, Z.; Liu, H.; Ding, S. Highly efficient MOF-based self-propelled micromotors for water purification. RSC Adv. 2017, 7, 42462–42467. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Yang, W.; Zhang, Z.; Tang, J. Surfactant-assisted fabrication of 3D Prussian blue-reduced graphene oxide hydrogel as a self-propelling motor for water treatment. Nanoscale 2015, 7, 10498–10503. [Google Scholar] [CrossRef]
- Sattayasamitsathit, S.; Kaufmann, K.; Galarnyk, M.; Vazquez-Duhalt, R.; Wang, J. Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Adv. 2014, 4, 27565–27570. [Google Scholar] [CrossRef]
- Ying, Y.; Pourrahimi, A.M.; Sofer, Z.; Matějková, S.; Pumera, M. Radioactive Uranium Preconcentration via Self-Propelled Autonomous Microrobots Based on Metal–Organic Frameworks. ACS Nano 2019, 13, 11477–11487. [Google Scholar] [CrossRef] [PubMed]
- Vilela, D.; Parmar, J.; Zeng, Y.; Zhao, Y.; Sánchez, S. Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water. Nano Lett. 2016, 16, 2860–2866. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, U.; Soler, L.; Gibbs, J.G.; Sanchez, S.; Fischer, P. Surface roughness-induced speed increase for active Janus micromotors. Chem. Commun. 2015, 51, 8660–8663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.V.; Soto, F.; Kaufmann, K.; Wang, J. Micromotor-Based Energy Generation. Angew. Chem. Int. Ed. 2015, 54, 6896–6899. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Z.; Huang, G.; An, Z.; Chen, G.; Zhang, J.; Li, M.; Liu, R.; Mei, Y. Hierarchical nanoporous microtubes for high-speed catalytic microengines. NPG Asia Mater. 2014, 6, e94. [Google Scholar] [CrossRef] [Green Version]
Motor Shape | Motor Size | Motor Material | H2O2 Concentration | H2O2 Composition | Volume of O2 per sec | Ref. |
---|---|---|---|---|---|---|
Microparticles | 35 μm | Ag | 9% | 9% H2O2 and 0.5% SDS | 4.29 × 10−3 nL | [173] |
Microparticles | 5 μm | MnO2 | 12% | 12% H2O2 and 0.5% SDS | 1.21 × 10−3 nL | [173] |
Rolled-up catalytic microtubes | 20 μm-long tubes | Ti/Cr/Pt | 6% | 6% H2O2 and 32% soap | 3.38 × 10−3 nL | [44] |
Nanoparticle-shelled microbubbles | 170 μm | Ti/Pt catalyst | 14% | 14% H2O2 and 10% PVA | 5.144 nL | [174] |
Catalytic Nanoshell Micromotors | 2 μm | Pt–Ag–Au layers onto silica beads | 5% | 1.8% H2O2 inside the shell and 5% H2O2 outside the shell | 4.39 × 10−4 nL | [93] |
Catalytic microtubular engines | 2 μm diameter, 8 μm long | PANI/Pt bilayer tube | 10% | 10% H2O2 and 1.6% NaCh | 1.18 × 10−3 nL | [22] |
Disk-like | 8 μm diameter | Au-Ni-Pt | 2% | 3.35 × 10−4 nL | [175] | |
Janus heparin-loaded ammoniated-hollow mesoporous silica (H-A-HMS) nanomotor | 250 nm | Fe3O4 core, CTAB mesoporous template agent, ammoniated process, Pt decorating onto the partial surface | 15% | 15% H2O2 and 0.3% SDS | 6.93 × 10−6 nL | [176] |
Hollow dumbbell-shaped | 10 μm | MnO2 | 10% | 1.15 × 10−3 nL | [177] | |
Disk-like micro-craft | 12 μm diameter | Au–Ni–Pt | 20% | 1.18 × 10−2 nL | [178] | |
Janus nanoparticles | 320 ± 20 nm | TiO2/MnO2 | 15% | 10% H2O2 and 0.2% SDS | 2.2 × 10−6 nL | [110] |
ACFs (active carbon fibers)-based micromotors | 15 μm | Mn3O4@ZnO/ACFs micromotors | 7% | 7% H2O2 and 1.25% SDS | 2.3 × 10−2 nL | [179] |
Metal sandwiched polytryptophan body | 6 μm long, 400 nm diameter | Au/poly-Trp/Co | 10% | 20 nL | [180] | |
Spherical particle | 10 µm | MnO2 | 5% | 5% H2O2 and 0.1% SDS | 3.1 × 10−2 nL | [181] |
Pot-like hollow particle | 25 µm | MnFe2O4/OA | 2% | 2% H2O2 and 0.1% CTAB | 8.5 × 10−2 nL | [182] |
Janus particle | 5.6 µm | rGO/γ-Fe2O3/SiO2-Pt | 10% | 10% H2O2 and 1.5% NaCh | 1.2 × 10−2 nL | [183] |
Spherical particle | 5 µm | Au/Pt/TiO2 | 10% | 10% H2O2 and 1% SDS | 1.7 × 10−3 nL | [184] |
Janus, spiky | 30 ± 0.4 µm | Sporopollenin exine capsules (SECs) | 7% | 7% H2O2 and 0.3% of SDS | 4.2 × 10−2 nL | [185] |
Janus, spherical | 80 µm | Ag-ZIF | 20% | 20% H2O2 and 0.2% of SDS | 5.7 nL | [186] |
Microtubes | 15 and 45 μm | Ti/Cr/Pd | 8% | 8% H2O2 and 10% SDS | 8.1 × 10−2 nL | [187] |
Cylindrical | 3 mm diameter, 3 mm long | KMnO4/PAM hydrogel (H-motor) | 10% | 2.7 × 104 nL | [112] | |
Tubular hydrogel | 0.7 cm | PB/SDS/rGO/hydrogel | 7.5% | 6.6 × 103 nL | [187] | |
Tubular hydrogel | 0.7 cm | PB/SDS/rGO/hydrogel | 22.5% | 1.7 × 104 nL | [187] | |
Cylindrical | 1 mm diameter and 7 mm long | Enzyme/rich tissue | 0.05% | 0.05% H2O2 and 0.5% SDS | 31 nL | [188] |
Rods | 5 μm diameter and 14 μm long | ZIF-8 rods loaded with Fe3O4 NPs and chemical deposition of Pt NPs | 5% | 5% H2O2 and 1% SDS | 6.7 × 10−3 nL | [189] |
Cylindrical rolled-up tubes | 600 nm diameter and 10 μm long | InGaAs/GaAs/(Cr)Pt | 20% | 20% H2O2 and 10% soap | 3.1 × 10−5 nL | [109] |
Tube | 4.6 µm | Pt/Ni/GOx | 1.5% | 1.5% H2O2 and 0.1% SDS | 5.5 × 10−3 nL | [190] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeem, S.; Naeem, F.; Mujtaba, J.; Shukla, A.K.; Mitra, S.; Huang, G.; Gulina, L.; Rudakovskaya, P.; Cui, J.; Tolstoy, V.; et al. Oxygen Generation Using Catalytic Nano/Micromotors. Micromachines 2021, 12, 1251. https://doi.org/10.3390/mi12101251
Naeem S, Naeem F, Mujtaba J, Shukla AK, Mitra S, Huang G, Gulina L, Rudakovskaya P, Cui J, Tolstoy V, et al. Oxygen Generation Using Catalytic Nano/Micromotors. Micromachines. 2021; 12(10):1251. https://doi.org/10.3390/mi12101251
Chicago/Turabian StyleNaeem, Sumayyah, Farah Naeem, Jawayria Mujtaba, Ashish Kumar Shukla, Shirsendu Mitra, Gaoshan Huang, Larisa Gulina, Polina Rudakovskaya, Jizhai Cui, Valeri Tolstoy, and et al. 2021. "Oxygen Generation Using Catalytic Nano/Micromotors" Micromachines 12, no. 10: 1251. https://doi.org/10.3390/mi12101251
APA StyleNaeem, S., Naeem, F., Mujtaba, J., Shukla, A. K., Mitra, S., Huang, G., Gulina, L., Rudakovskaya, P., Cui, J., Tolstoy, V., Gorin, D., Mei, Y., Solovev, A. A., & Dey, K. K. (2021). Oxygen Generation Using Catalytic Nano/Micromotors. Micromachines, 12(10), 1251. https://doi.org/10.3390/mi12101251