Micromagnetic Simulation of L10-FePt-Based Exchange-Coupled-Composite-Bit-Patterned Media with Microwave-Assisted Magnetic Recording at Ultrahigh Areal Density
Abstract
:1. Introduction
2. Modeling and Analytical Methodology
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ross, C. Patterned Magnetic Recording Media. Annu. Rev. Mater. Res. 2001, 31, 203–235. [Google Scholar] [CrossRef]
- Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A.; Mewes, T.; Mewes, C.; Kruesubthaworn, A. Electromagnetic interference-induced instability in CPP-GMR read heads. J. Magn. Magn. Mater. 2016, 412, 42–48. [Google Scholar] [CrossRef]
- Nagasaka, K. CPP-GMR technology for magnetic read heads of future high-density recording systems. J. Magn. Magn. Mater. 2009, 321, 508–511. [Google Scholar] [CrossRef]
- Khunkitti, P.; Pituso, K.; Chaiduangsri, N.; Siritaratiwat, A. Optimal Sizing of CPP-GMR Read Sensors for Magnetic Recording Densities of 1–4 Tb/in2. IEEE Access 2021, 9, 130758–130766. [Google Scholar] [CrossRef]
- Khunkitti, P.; Kaewrawang, A.; Siritaratiwat, A.; Mewes, T.; Mewes, C.K.A.; Kruesubthaworn, A. A novel technique to detect effects of electromagnetic interference by electrostatic discharge simulator to test parameters of tunneling magnetoresistive read heads. J. Appl. Phys. 2015, 117, 17A908. [Google Scholar] [CrossRef]
- Khunkitti, P.; Siritaratiwat, A.; Pituso, K. Free Layer Thickness Dependence of the Stability in Co2(Mn0.6Fe0.4)Ge Heusler Based CPP-GMR Read Sensor for Areal Density of 1 Tb/in2. Micromachines 2021, 12, 1010. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-P.; Shen, W.; Bai, J. Exchange coupled composite media for perpendicular magnetic recording. IEEE Trans. Magn. 2005, 41, 3181–3186. [Google Scholar] [CrossRef]
- Wang, Y.; Erden, M.F.; Victora, R.H. Novel system design for readback at 10 terabits per square inch user areal density. IEEE Magn. Lett. 2012, 3, 4500304. [Google Scholar]
- Zhao, B.; Xue, H.; Zhu, Z.; Ren, Y.; Jin, Q.Y.; Zhang, Z. Interlayer modulation on the dynamic magnetic properties of L10-FePt/NM/[CoNi]5 composite film structures. Appl. Phys. Lett. 2019, 115, 062401. [Google Scholar] [CrossRef]
- Pituso, K.; Khunkitti, P.; Tongsomporn, D.; Kruesubthaworn, A.; Chooruang, K.; Siritaratiwat, A.; Kaewrawang, A. Simulation of magnetic footprints for heat assisted magnetic recording. Eur. Phys. J. Appl. Phys. 2017, 78, 20301. [Google Scholar] [CrossRef]
- Pituso, K.; Kaewrawang, A.; Buatong, P.; Siritaratiwat, A.; Kruesubthaworn, A. The temperature and electromagnetic field distributions of heat-assisted magnetic recording for bit-patterned media at ultrahigh areal density. J. Appl. Phys. 2015, 117, 17C501. [Google Scholar] [CrossRef]
- Tipcharoen, W.; Kaewrawang, A.; Siritaratiwat, A. Design and Micromagnetic Simulation of Fe/L10-FePt/Fe Trilayer for Exchange Coupled Composite Bit Patterned Media at Ultrahigh Areal Density. Adv. Mater. Sci. Eng. 2015, 2015, 504628. [Google Scholar] [CrossRef] [Green Version]
- Krone, P.; Makarov, D.; Schrefl, T.; Albrecht, M. Exchange coupled composite bit patterned media. Appl. Phys. Lett. 2010, 97, 82501. [Google Scholar] [CrossRef]
- Boone, C.; Katine, J.A.; Marinero, E.E.; Pisana, S.; Terris, B.D. Microwave-Assisted Magnetic Reversal in Perpendicular Media. IEEE Magn. Lett. 2012, 3, 3500104. [Google Scholar] [CrossRef]
- Fal, T.J.; Camley, R.E. Microwave assisted switching In bit patterned media: Accessing multiple states. Appl. Phys. Lett. 2010, 97, 122506. [Google Scholar] [CrossRef]
- Bai, X.; Zhu, J.-G. Effective Field Analysis of Segmented Media for Microwave-Assisted Magnetic Recording. IEEE Magn. Lett. 2017, 8, 1–4. [Google Scholar] [CrossRef]
- Greaves, S.J.; Chan, K.S.; Kanai, Y. Areal Density Capability of Dual-Structure Media for Microwave-Assisted Magnetic Re-cording. IEEE Trans. Magn. 2019, 55, 6701509. [Google Scholar] [CrossRef]
- Tanaka, T.; Kurihara, K.; Ya, X.; Kanai, Y.; Bai, X.; Matsuyama, K. MAMR writability and signal-recording characteristics on granular exchange-coupled composite media. J. Magn. Magn. Mater. 2021, 529, 167884. [Google Scholar] [CrossRef]
- Shiroishi, Y.; Fukuda, K.; Tagawa, I.; Iwasaki, H.; Takenoiri, S.; Tanaka, H.; Mutoh, H.; Yoshikawa, N. Future Options for HDD Storage. IEEE Trans. Magn. 2009, 45, 3816–3822. [Google Scholar] [CrossRef]
- Donahue, M.J.; Porter, D.G. OOMMF User’s Guide, Release 1.2a3. Available online: https://math.nist.gov/oommf/ftp-archive/doc/userguide12a3_20021030.pdf (accessed on 15 October 2021).
- Barmak, K.; Coffey, K.R.; Thiele, J.-U.; Kim, J.; Lewis, L.H.; Toney, M.F.; Kellock, A.J. Stoichiometry-anisotropy connections in epitaxial L10 FePt(001) films. J. Appl. Phys. 2004, 95, 7501–7503. [Google Scholar] [CrossRef]
- Wang, F.; Xu, X.-H.; Liang, Y.; Zhang, J.; Zhang, J. Perpendicular L10-FePt/Fe and L10-FePt/Ru/Fe graded media obtained by post-annealing. Mater. Chem. Phys. 2011, 126, 843–846. [Google Scholar] [CrossRef]
- Laval, M.; Bonnefois, J.J.; Bobo, J.F.; Issac, F.; Boust, F. Microwave-assisted switching of NiFe magnetic microstructures. J. Appl. Phys. 2009, 105, 73912. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khunkitti, P.; Wannawong, N.; Jongjaihan, C.; Siritaratiwat, A.; Kruesubthaworn, A.; Kaewrawang, A. Micromagnetic Simulation of L10-FePt-Based Exchange-Coupled-Composite-Bit-Patterned Media with Microwave-Assisted Magnetic Recording at Ultrahigh Areal Density. Micromachines 2021, 12, 1264. https://doi.org/10.3390/mi12101264
Khunkitti P, Wannawong N, Jongjaihan C, Siritaratiwat A, Kruesubthaworn A, Kaewrawang A. Micromagnetic Simulation of L10-FePt-Based Exchange-Coupled-Composite-Bit-Patterned Media with Microwave-Assisted Magnetic Recording at Ultrahigh Areal Density. Micromachines. 2021; 12(10):1264. https://doi.org/10.3390/mi12101264
Chicago/Turabian StyleKhunkitti, Pirat, Naruemon Wannawong, Chavakon Jongjaihan, Apirat Siritaratiwat, Anan Kruesubthaworn, and Arkom Kaewrawang. 2021. "Micromagnetic Simulation of L10-FePt-Based Exchange-Coupled-Composite-Bit-Patterned Media with Microwave-Assisted Magnetic Recording at Ultrahigh Areal Density" Micromachines 12, no. 10: 1264. https://doi.org/10.3390/mi12101264
APA StyleKhunkitti, P., Wannawong, N., Jongjaihan, C., Siritaratiwat, A., Kruesubthaworn, A., & Kaewrawang, A. (2021). Micromagnetic Simulation of L10-FePt-Based Exchange-Coupled-Composite-Bit-Patterned Media with Microwave-Assisted Magnetic Recording at Ultrahigh Areal Density. Micromachines, 12(10), 1264. https://doi.org/10.3390/mi12101264