A Hybrid Structure of Piezoelectric Fibers and Soft Materials as a Smart Floatable Open-Water Wave Energy Converter
Abstract
:1. Introduction
2. Design and Fabrication
3. Results
3.1. Rectifier Circuit and Electrical Measurement
3.2. Wave Flume and Experimental Setup
3.3. Horizontal Test Conditions
3.4. Results and Discussion of Horizontal Test Conditions
3.5. One-Sided Anchored Configuration
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grilo, M.M.d.S.; Fortes, A.F.C.; de Souza, R.P.G.; Silva, J.A.M.; Carvalho, M. Carbon footprints for the supply of electricity to a heat pump: Solar energy vs. electric grid. J. Renew. Sustain. Energy 2018, 10, 023701. [Google Scholar] [CrossRef]
- McCrone, A.; Moslener, U.; D’Estais, F.; Grüning, C.; Emmerich, M. Global Trends in Renewable Energy Investment 2020. Available online: http://www.fs-unep-centre.org (accessed on 27 May 2021).
- Keček, D.; Mikulić, D.; Lovrinčević, Ž. Deployment of renewable energy: Economic effects on the Croatian economy. Energy Policy 2018, 126, 402–410. [Google Scholar] [CrossRef]
- Bauwens, T. Analyzing the determinants of the size of investments by community renewable energy members: Findings and policy implications from Flanders. Energy Policy 2019, 129, 841–852. [Google Scholar] [CrossRef]
- Herman, K.S. Attracting foreign direct investment the Chilean government’s role promoting renewable energy. In Proceedings of the International Conference on Renewable Energy Research and Applications, Madrid, Spain, 20–23 October 2013; pp. 37–41. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.A.; Scandurra, G. Investments in Renewable Energy Sources in OPEC Members: A Dynamic Panel Approach. Metod. Zv. 2014, 11, 93–106. [Google Scholar]
- Sikder, A.; Inekwe, J.; Bhattacharya, M. Economic output in the era of changing energy-mix for G20 countries: New evidence with trade openness and research and development investment. Appl. Energy 2018, 235, 930–938. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, C.; Song, J. Review of Renewable Energy Technologies Utilized in the Oil and Gas Industry. Int. J. Renew. Energy Res. 2017, 7, 592–598. [Google Scholar]
- Saadawi, H. Application of Renewable Energy in the Oil and Gas Industry. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 18–21 March 2019. [Google Scholar] [CrossRef]
- Khazaee, M.; Rezaniakolaie, A.; Moosavian, A.; Rosendahl, L. A novel method for autonomous remote condition monitoring of rotating machines using piezoelectric energy harvesting approach. Sens. Actuators A Phys. 2019, 295, 37–50. [Google Scholar] [CrossRef]
- Malinchik, S.; Hill, C.; Roberts, A.; Fierro, S. Geo-Spatial resource analysis and optimization of investment strategies for renewable energy. In Proceedings of the 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, Waltham, MA, USA, 27–29 September 2010; pp. 70–77. [Google Scholar] [CrossRef]
- Wang, J.; Geng, L.; Ding, L.; Zhu, H.; Yurchenko, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl. Energy 2020, 267, 114902. [Google Scholar] [CrossRef]
- Roy, S.; Mallick, D.; Paul, K. MEMS-Based Vibrational Energy Harvesting and Conversion Employing Micro-/Nano-Magnetics. IEEE Trans. Magn. 2019, 55, 4700315. [Google Scholar] [CrossRef]
- Li, M.; Jing, X. Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting. Appl. Energy 2019, 255, 113829. [Google Scholar] [CrossRef]
- Weiss, C.V.d.C.; Guanche, R.; Ondiviela, B.; Castellanos, O.F.; Juanes, J. Marine renewable energy potential: A global perspective for offshore wind and wave exploitation. Energy Convers. Manag. 2018, 177, 43–54. [Google Scholar] [CrossRef]
- Zhang, L.B.; Dai, H.L.; Yang, Y.W.; Wang, L. Design of high-efficiency electromagnetic energy harvester based on a rolling magnet. Energy Convers. Manag. 2019, 185, 202–210. [Google Scholar] [CrossRef]
- Moretti, G.; Malara, G.; Scialò, A.; Daniele, L.; Romolo, A.; Vertechy, R.; Fontana, M.; Arena, F. Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator. Renew. Energy 2019, 146, 628–642. [Google Scholar] [CrossRef]
- Wang, N.; Zou, J.; Yang, Y.; Li, X.; Guo, Y.; Jiang, C.; Jia, X.; Cao, X. Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting. Nano Energy 2018, 55, 541–547. [Google Scholar] [CrossRef]
- Mutsuda, H.; Tanaka, Y.; Doi, Y.; Moriyama, Y. Application of a flexible device coating with piezoelectric paint for harvesting wave energy. Ocean Eng. 2018, 172, 170–182. [Google Scholar] [CrossRef]
- Spreemann, D.; Manoli, Y. Electromagnetic Vibration Energy Harvesting Devices: Architectures, Design, Modeling and Optimization; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Wada, Y.; Hamate, Y.; Nagasawa, S.; Kuwano, H. Aging characteristics of electret used in a vibration-based electrostatic induction energy harvester. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; Volume 1, pp. 2626–2629. [Google Scholar] [CrossRef]
- Peng, J.; Kang, S.D.; Snyder, G.J. Optimization principles and the figure of merit for triboelectric generators. Sci. Adv. 2017, 3, eaap8576. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Unnikrishnan, L.; Nayak, S.K.; Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol. Mater. Eng. 2018, 304, 1800463. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, J.; Li, X.; Lu, Y.; Zhang, S.; Cheng, Z. Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range. Nano Energy 2019, 61, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Qiu, C.; Li, G.; Ma, M.; Yang, S.; Xu, Z.; Li, F. High output power density of a shear-mode piezoelectric energy harvester based on Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Appl. Energy 2020, 271, 115193. [Google Scholar] [CrossRef]
- Hafizh, M.; Muthalif, A.G.A.; Renno, J.; Paurobally, M.R.; Arab, M.A.; Bahadur, I.; Ouakad, H. A hybrid piezoelectric–electromagnetic nonlinear vibration energy harvester excited by fluid flow. Comptes Rendus Mécanique 2021, 349, 65–81. [Google Scholar] [CrossRef]
- Turkmen, A.C.; Celik, C. Energy harvesting with the piezoelectric material integrated shoe. Energy 2018, 150, 556–564. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, S.; Liu, H. A utility piezoelectric energy harvester with low frequency and high-output voltage: Theoretical model, experimental verification and energy storage. AIP Adv. 2016, 6, 095208. [Google Scholar] [CrossRef] [Green Version]
- Gablech, I.; Klempa, J.; Pekárek, J.; Vyroubal, P.; Hrabina, J.; Holá, M.; Kunz, J.; Brodský, J.; Neužil, P. Simple and Efficient AlN-Based Piezoelectric Energy Harvesters. Micromachines 2020, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Guyomar, D.; Lallart, M. Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation. Micromachines 2011, 2, 274–294. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Argent, M.; McDonald, A.; Leithead, W.; Giles, A. Optimisation of design and operation of generators for offshore vertical axis wind turbines. Wind. Energy 2019, 22, 1324–1342. [Google Scholar] [CrossRef]
- Izadgoshasb, I.; Lim, Y.; Padilla, R.V.; Sedighi, M.; Novak, J. Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations. Energies 2019, 12, 2770. [Google Scholar] [CrossRef] [Green Version]
- Felix, A.; Fontes, J.V.H.; Lithgow, D.; Mendoza, E.; Posada, G.; Ring, M.; Silva, R. Wave Energy in Tropical Regions: Deployment Challenges, Environmental and Social Perspectives. J. Mar. Sci. Eng. 2019, 7, 219. [Google Scholar] [CrossRef] [Green Version]
- Tawfiq, K.B.; Mansour, A.S.; Ramadan, H.S.; Becherif, M.; El-Kholy, E.E. Wind Energy Conversion System Topologies and Converters: Comparative Review. Energy Procedia 2019, 162, 38–47. [Google Scholar] [CrossRef]
- Hamlehdar, M.; Kasaeian, A.; Safaei, M.R. Energy harvesting from fluid flow using piezoelectrics: A critical review. Renew. Energy 2019, 143, 1826–1838. [Google Scholar] [CrossRef]
- Yang, Z.; Erturk, A.; Zu, J. On the efficiency of piezoelectric energy harvesters. Extreme Mech. Lett. 2017, 15, 26–37. [Google Scholar] [CrossRef]
- Uihlein, A.; Magagna, D. Wave and tidal current energy—A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar] [CrossRef]
- Haikonen, K.; Sundberg, J.; Leijon, M. Characteristics of the Operational Noise from Full Scale Wave Energy Converters in the Lysekil Project: Estimation of Potential Environmental Impacts. Energies 2013, 6, 2562–2582. [Google Scholar] [CrossRef] [Green Version]
- Patricio, S.; Moura, A.; Simas, T. Wave energy and underwater noise: State of art and uncertainties. In Proceedings of the OCEANS 2009-Europe, Bremen, Germany, 11–14 May 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Rinaldi, G.; Thies, P.R.; Walker, R.; Johanning, L. On the Analysis of a Wave Energy Farm with Focus on Maintenance Operations. J. Mar. Sci. Eng. 2016, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Rémouit, F.; Chatzigiannakou, M.-A.; Bender, A.; Temiz, I.; Sundberg, J.; Engström, J. Deployment and Maintenance of Wave Energy Converters at the Lysekil Research Site: A Comparative Study on the Use of Divers and Remotely-Operated Vehicles. J. Mar. Sci. Eng. 2018, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Alsaadi, A.; Shi, Y.; Pan, L.; Tao, J.; Jia, Y. Vibration energy harvesting of multifunctional carbon fibre composite laminate structures. Compos. Sci. Technol. 2019, 178, 1–10. [Google Scholar] [CrossRef]
- Tang, L.; Yang, Y.; Li, H. Optimizing efficiency of energy harvesting by macro-fiber composites. In Proceedings of the SPIE 7268, Smart Structures, Devices, and Systems IV, Melbourne, Australia, 30 December 2008; Volume 7268, p. 726808. [Google Scholar] [CrossRef]
- Smart-Materials.com/MFC-Products-Properties/Shear Modulus. Available online: www.smart-material.com/MFC-product-properties.html (accessed on 15 May 2021).
- Steck, D.; Qu, J.; Kordmahale, S.B.; Tscharnuter, D.; Muliana, A.; Kameoka, J. Mechanical responses of Ecoflex silicone rubber: Compressible and incompressible behaviors. J. Appl. Polym. Sci. 2019, 136, 47025. [Google Scholar] [CrossRef]
- Saghati, A.P.; Kordmahale, S.B.; Kameoka, J.; Entesari, K. A reconfigurable quarter-mode substrate integrated waveguide cavity filter employing liquid-metal capacitive loading. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 20–22. [Google Scholar] [CrossRef]
- Saghati, A.P.; Kordmahale, S.B.; Saghati, A.P.; Kameoka, J.; Entesari, K. Reconfigurable quarter-mode SIW antenna employing a fluidically switchable via. In Proceedings of the 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016—Proceedings, Fajardo, PR, USA, 26 June–1 July 2016; pp. 845–846. [Google Scholar] [CrossRef]
- Huang, P.-J.; Kordmahale, S.B.; Chou, C.-K.; Yamaguchi, H.; Hung, M.-C.; Kameoka, J. Development of automated high throughput single molecular microfluidic detection platform for signal transduction analysis. In Proceedings of the SPIE 9705, Microfluidics, BioMEMS, and Medical Microsystems XIV, San Francisco, MA, USA, 21 March 2016; Volume 9705, p. 970511. [Google Scholar] [CrossRef]
- Kordmahale, J.B.; Kameoka, S. Smart Soft Actuation System. Ann. Mater. Sci. Eng. 2015, 2, 2–3. [Google Scholar]
- Yang, Y.; Tang, L.; Li, H. Vibration energy harvesting using macro-fiber composites. Smart Mater. Struct. 2009, 18, 115025. [Google Scholar] [CrossRef]
- Kashiwao, T.; Izadgoshasb, I.; Lim, Y.Y.; Deguchi, M. Optimization of rectifier circuits for a vibration energy harvesting system using a macro-fiber composite piezoelectric element. Microelectron. J. 2016, 54, 109–115. [Google Scholar] [CrossRef]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific Publishing Company: Singapore, 1991. [Google Scholar]
- Kordmahale, S.B.; Do, J.; Chang, K.-A.; Kameoka, J. Low Cost and Piezoelectric based Soft Wave Energy Harvester. MRS Adv. 2019, 4, 889–895. [Google Scholar] [CrossRef]
- Song, R.; Zhang, M.; Qian, X.; Wang, X.; Dai, Y.M.; Chen, J. A Floating Ocean Energy Conversion Device and Numerical Study on Buoy Shape and Performance. J. Mar. Sci. Eng. 2016, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Shi, J.; Si, Y.; Li, T. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 2019, 61, 132–140. [Google Scholar] [CrossRef]
- Rodrigues, C.; Ramos, M.; Esteves, R.; Correia, J.; Clemente, D.; Gonçalves, F.; Mathias, N.; Gomes, M.; Silva, J.; Duarte, C.; et al. Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: Performance assessment in realistic sea conditions. Nano Energy 2021, 84, 105890. [Google Scholar] [CrossRef]
- Pruvost, M.; Smit, W.J.; Monteux, C.; Del Corro, P.; Dufour, I.; Ayela, C.; Poulin, P.; Colin, A. Integration of a soft dielectric composite into a cantilever beam for mechanical energy harvesting, comparison between capacitive and triboelectric transducers. Sci. Rep. 2020, 10, 20681. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Uenishi, K. Electrostatic MEMS Vibration Energy Harvesters inside of Tire Treads. Sensors 2019, 19, 890. [Google Scholar] [CrossRef] [Green Version]
- Todaro, M.T.; Guido, F.; Mastronardi, V.; Desmaele, D.; Epifani, G.; Algieri, L.; De Vittorio, M. Piezoelectric MEMS vibrational energy harvesters: Advances and outlook. Microelectron. Eng. 2017, 183–184, 23–36. [Google Scholar] [CrossRef]
- Liu, L.; Shi, Q.; Lee, C. A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 2020, 76, 105052. [Google Scholar] [CrossRef]
(a) Wave Period, T (s) | (b) Nominal Wave Height (cm) | (c) Measured Wave Height, H (cm) | (d) Wavelength L (cm) | (e) Wave Steepness (H/L) |
---|---|---|---|---|
0.75 | 20 | 20 | 88 | 0.23 |
0.75 | 15 | 15 | 88 | 0.17 |
0.75 | 10 | 11 | 88 | 0.13 |
0.75 | 5 | 6 | 88 | 0.07 |
1.0 | 20 | 31 | 156 | 0.19 |
1.0 | 15 | 25 | 156 | 0.16 |
1.0 | 10 | 17 | 156 | 0.11 |
1.0 | 5 | 9 | 156 | 0.06 |
1.25 | 20 | NA | NA | NA |
1.25 | 15 | 30 | 241 | 0.13 |
1.25 | 10 | 21 | 241 | 0.09 |
1.25 | 5 | 11 | 241 | 0.04 |
1.5 | 20 | NA | NA | NA |
1.5 | 15 | NA | NA | NA |
1.5 | 10 | 23 | 335 | 0.07 |
1.5 | 5 | 12 | 335 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghbani Kordmahale, S.; Do, J.; Chang, K.-A.; Kameoka, J. A Hybrid Structure of Piezoelectric Fibers and Soft Materials as a Smart Floatable Open-Water Wave Energy Converter. Micromachines 2021, 12, 1269. https://doi.org/10.3390/mi12101269
Baghbani Kordmahale S, Do J, Chang K-A, Kameoka J. A Hybrid Structure of Piezoelectric Fibers and Soft Materials as a Smart Floatable Open-Water Wave Energy Converter. Micromachines. 2021; 12(10):1269. https://doi.org/10.3390/mi12101269
Chicago/Turabian StyleBaghbani Kordmahale, Sina, Jitae Do, Kuang-An Chang, and Jun Kameoka. 2021. "A Hybrid Structure of Piezoelectric Fibers and Soft Materials as a Smart Floatable Open-Water Wave Energy Converter" Micromachines 12, no. 10: 1269. https://doi.org/10.3390/mi12101269
APA StyleBaghbani Kordmahale, S., Do, J., Chang, K. -A., & Kameoka, J. (2021). A Hybrid Structure of Piezoelectric Fibers and Soft Materials as a Smart Floatable Open-Water Wave Energy Converter. Micromachines, 12(10), 1269. https://doi.org/10.3390/mi12101269