Investigating the Function of Adult DRG Neuron Axons Using an In Vitro Microfluidic Culture System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication and Assembly of PDMS Microfluidic Chambers
2.2. Isolation and Culture of Adult DRG Neurons
2.3. Calcium Imaging
2.4. IL-6 Sensitization of Axons
2.5. Immunocytochemistry
2.6. Image Analysis and Data Processing
2.7. Statistical Analysis
3. Results
3.1. Characterization of Adult DRG Neuron Preparations in Microfluidic Chambers
3.2. Characterization of DRG in Microfluidic Devices
3.3. Calcium Imaging to Assess Axon Functionality
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esposito, M.F.; Malayil, R.; Hanes, M.; Deer, T. Unique Characteristics of the Dorsal Root Ganglion as a Target for Neuromodulation. Pain Med. 2019, 20, S23–S30. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.D.; Christensen, A.D.; Tewari, D.; McMahon, S.B.; Hamilton, J.A. Immune Cytokines and Their Receptors in Inflammatory Pain. Trends Immunol. 2018, 39, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Gumy, L.F.; Yeo, G.S.H.; Tung, Y.-C.L.; Zivraj, K.H.; Willis, D.; Coppola, G.; Lam, B.Y.H.; Twiss, J.L.; Holt, C.E.; Fawcett, J.W. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. Rna 2011, 17, 85–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, T.; Geranton, M. Translating nociceptor sensitivity: The role of axonal protein synthesis in nociceptor physiology. Eur. J. Neurosci. 2010, 29, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Black, B.J.; Atmaramani, R.; Kumaraju, R.; Plagens, S.; Romero-Ortega, M.; Dussor, G.; Price, T.J.; Campbell, Z.T.; Pancrazio, J.J. Adult mouse sensory neurons on microelectrode arrays exhibit increased spontaneous and stimulus-evoked activity in the presence of interleukin-6. J. Neurophysiol. 2018, 120, 1374–1385. [Google Scholar] [CrossRef] [PubMed]
- Habibey, R.; Golabchi, A.; Latifi, S.; Difato, F.; Blau, A. A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration. Lab Chip 2015, 15, 4578–4590. [Google Scholar] [CrossRef] [PubMed]
- Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M. Microfluidic device for unidirectional axon growth. J. Phys. Conf. Ser. 2015, 643, 012025. [Google Scholar] [CrossRef] [Green Version]
- Neto, E.; Alves, C.J.; Sousa, D.M.; Alencastre, I.S.; Lourenço, A.H.; Leitão, L.; Ryu, H.R.; Jeon, N.L.; Fernandes, R.; Aguiar, P.; et al. Sensory neurons and osteoblasts: Close partners in a microfluidic platform. Integr. Biol. 2014, 6, 586–595. [Google Scholar] [CrossRef]
- van de Wijdeven, R.; Ramstad, O.H.; Bauer, U.S.; Halaas, Ø.; Sandvig, A.; Sandvig, I. Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip. Biomed. Microdevices 2018, 20, 9. [Google Scholar] [CrossRef]
- Tsantoulas, C.; Farmer, C.; Machado, P.; Baba, K.; McMahon, S.B.; Raouf, R. Probing functional properties of nociceptive axons using a microfluidic culture system. PLoS ONE 2013, 8, e80722. [Google Scholar] [CrossRef]
- Atmaramani, R.; Black, B.J.; Lam, K.H.; Sheth, V.M.; Pancrazio, J.J.; Schmidtke, D.W.; Alsmadi, N.Z. The effect of microfluidic geometry on myoblast migration. Micromachines 2019, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Alsmadi, N.Z.; Shapiro, S.J.; Lewis, C.S.; Sheth, V.M.; Snyder, T.A.; Schmidtke, D.W. Constricted microfluidic devices to study the effects of transient high shear exposure on platelets. Biomicrofluidics 2017, 11, 064105. [Google Scholar] [CrossRef]
- Newton, R.A.; Bingham, S.; Case, P.C.; Sanger, G.J.; Lawson, S.N. Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury. Mol. Brain Res. 2001, 95, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Balzer, E.M.; Dallas, M.R.; Hung, W.-C.; Stebe, K.J.; Konstantopoulos, K. Chemotaxis of Cell Populations through Confined Spaces at Single-Cell Resolution. PLoS ONE 2012, 7, e29211. [Google Scholar] [CrossRef] [Green Version]
- Aoun, L.; Nègre, P.; Gonsales, C.; de Noray, V.S.; Brustlein, S.; Biarnes-Pelicot, M.; Valignat, M.-P.; Theodoly, O. Leukocyte transmigration and longitudinal forward-thrusting force in a microfluidic Transwell device. Biophys. J. 2021, 120, 2205–2221. [Google Scholar] [CrossRef]
- Wainger, B.J.; Buttermore, E.D.; Oliveira, J.T.; Mellin, C.; Lee, S.; Saber, W.A.; Wang, A.J.; Ichida, J.K.; Chiu, I.M.; Barrett, L.; et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci. 2015, 18, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Krames, E.S. The Role of the Dorsal Root Ganglion in the Development of Neuropathic Pain. Pain Med. 2014, 15, 1669–1685. [Google Scholar] [CrossRef]
- Milligan, E.D.; Watkins, L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 2009, 10, 23–36. [Google Scholar] [CrossRef]
- Nicol, G.D.; Vasko, M.R. Unraveling the story of NGF-mediated sensitization of nociceptive sensory neurons: ON or OFF the Trks? Mol. Interv. 2007, 7, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Otto, W.R.; Casula, M.A.; Day, N.C.; Davis, J.B.; Bountra, C.; Birch, R.; Anand, P. The effect of neurotrophic factors on morphology, TRPV1 expression and capsaicin responses of cultured human DRG sensory neurons. Neurosci. Lett. 2006, 399, 51–56. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.; Sun, L.; Zhang, Y.; Gan, W.; Tang, P.; Yang, G. Long-term imaging of dorsal root ganglia in awake behaving mice. Nat. Commun. 2019, 10, 3087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Huang, L.M. A simple and fast method to image calcium activity of neurons from intact dorsal root ganglia using fluorescent chemical Ca 2 þ indicators. Mol. Pain 2017, 13, 1744806917748051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, B.R.H.; Lehky, T.; Thomas, R.R.; Quinn, M.G.; Floeter, M.K.; Grem, J.L. Acute Oxaliplatin-Induced Peripheral Nerve Hyperexcitability. J. Clin. Oncol. 2007, 20, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.; Schumacher, M.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Siemens, J.; Zhou, S.; Piskorowski, R.; Nikai, T.; Lumpkin, E.A.; Basbaum, A.I.; King, D.; Julius, D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 2006, 444, 208–212. [Google Scholar] [CrossRef]
- Yang, G.; Tang, W.Y. Resistance of interleukin-6 to the extracellular inhibitory environment promotes axonal regeneration and functional recovery following spinal cord injury. Int. J. Mol. Med. 2017, 39, 437–445. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atmaramani, R.; Veeramachaneni, S.; Mogas, L.V.; Koppikar, P.; Black, B.J.; Hammack, A.; Pancrazio, J.J.; Granja-Vazquez, R. Investigating the Function of Adult DRG Neuron Axons Using an In Vitro Microfluidic Culture System. Micromachines 2021, 12, 1317. https://doi.org/10.3390/mi12111317
Atmaramani R, Veeramachaneni S, Mogas LV, Koppikar P, Black BJ, Hammack A, Pancrazio JJ, Granja-Vazquez R. Investigating the Function of Adult DRG Neuron Axons Using an In Vitro Microfluidic Culture System. Micromachines. 2021; 12(11):1317. https://doi.org/10.3390/mi12111317
Chicago/Turabian StyleAtmaramani, Rahul, Srivennela Veeramachaneni, Liz Valeria Mogas, Pratik Koppikar, Bryan J. Black, Audrey Hammack, Joseph J. Pancrazio, and Rafael Granja-Vazquez. 2021. "Investigating the Function of Adult DRG Neuron Axons Using an In Vitro Microfluidic Culture System" Micromachines 12, no. 11: 1317. https://doi.org/10.3390/mi12111317
APA StyleAtmaramani, R., Veeramachaneni, S., Mogas, L. V., Koppikar, P., Black, B. J., Hammack, A., Pancrazio, J. J., & Granja-Vazquez, R. (2021). Investigating the Function of Adult DRG Neuron Axons Using an In Vitro Microfluidic Culture System. Micromachines, 12(11), 1317. https://doi.org/10.3390/mi12111317