Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Design and Fabrication of the Microfluidic Chip
2.3. Optimization of Reaction Conditions
3. Results and Discussion
3.1. Principle
3.2. Detecting Process
3.3. Detecting Performance
3.4. Detection of Actual Samples
3.5. Operation of Microfluidic Chip
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Anthony, K.R.N.; Kline, D.I.; Diaz-Pulido, G.; Dove, S.; Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl. Acad. Sci. USA 2008, 105, 17442–17446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Zhu, J.M.; Chen, L.F.; Zuo, Y.F.; Hu, X.J.; Yang, Y. Autonomous and In Situ Ocean Environmental Monitoring on Optofluidic Platform. Micromachines 2020, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Rosenbaum, R.K.; Hauschild, M.Z. Assessment of Metal Toxicity in Marine Ecosystems: Comparative Toxicity Potentials for Nine Cationic Metals in Coastal Seawater. Environ. Sci. Technol. 2016, 50, 269–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanella, L.; Cubadda, F.; Sammartino, M.P.; Saoncella, A. An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Res. 2001, 35, 69–76. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.J.; Liu, J.H.; Shi, X.F. Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China. J. Geophys. Res. Oceans 2017, 122, 1190–1205. [Google Scholar] [CrossRef]
- Takano, S.; Tanimizu, M.; Hirata, T.; Sohrin, Y. Isotopic constraints on biogeochemical cycling of copper in the ocean. Nat. Commun. 2014, 5, 5663. [Google Scholar] [CrossRef] [Green Version]
- Al-Yousuf, M.H.; El-Shahawi, M.S.; Al-Ghais, S.M. Trace metals in liver, skin and muscle of Lethrinus lentjan fish species in relation to body length and sex. Sci. Total Environ. 2000, 256, 87–94. [Google Scholar] [CrossRef]
- Campbell, A.L.; Mangan, S.; Ellis, R.P.; Lewis, C. Ocean Acidification Increases Copper Toxicity to the Early Life History Stages of the Polychaete Arenicola marina in Artificial Seawater. Environ. Sci. Technol. 2014, 48, 9745–9753. [Google Scholar] [CrossRef]
- Sunda, W.; Kieber, D.J.; Kiene, R.P.; Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317–320. [Google Scholar] [CrossRef]
- Iyengar, G.V.; Nair, P.P. Global outlook on nutrition and the environment: Meeting the challenges of the next millennium. Sci. Total Environ. 2000, 249, 331–346. [Google Scholar] [CrossRef]
- Shi, Y.B.; Wang, R.M.; Yuan, W.; Liu, Q.Y.; Shi, M.; Feng, W.; Wu, Z.Y.; Hu, K.; Li, F.Y. Easy-to-Use Colorimetric Cyanine Probe for the Detection of Cu2+ in Wilson’s Disease. ACS Appl. Mater. Interfaces 2018, 10, 20377–20386. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Serrano, M.; Blasco, M.A. The common biology of cancer and ageing. Nature 2007, 448, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Zong, C.H.; Ai, K.L.; Zhang, G.; Li, H.W.; Lu, L.H. Dual-Emission Fluorescent Silica Nanoparticle-Based Probe for Ultrasensitive Detection of Cu2+. Anal. Chem. 2011, 83, 3126–3132. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.L.; Song, J.J.; Zhao, F.; Meng, X.G.; Wu, G.Y. Highly sensitive and selective colorimetric naked-eye detection of Cu2+ in aqueous medium using a hydrazone chemosensor. Sens. Actuators B Chem. 2015, 215, 241–248. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Wang, J.Q.; Bian, C.; Tong, J.H.; Xia, S.H. A MEMS-Based Multi-Parameter Integrated Chip and Its Portable System for Water Quality Detection. Micromachines 2020, 11, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.C.; Xu, H.Z.; Li, W.; Chen, Z.B. Colorimetric visualization of Cu2+ based on Cu2+-catalyzed reaction and the signal amplification induced by K+-aptamer-Cu2+ complex. Sens. Actuators B Chem. 2017, 241, 498–503. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhou, H.P.; Yin, S.H.; Jiang, H.; Niu, N.; Huang, H.; Shahzad, S.A.; Yu, C. A BOPHY probe for the fluorescence turn-on detection of Cu2+. Sens. Actuators B Chem. 2016, 235, 33–38. [Google Scholar] [CrossRef]
- Xu, H.; Huang, D.D.; Wu, Y.; Di, J.W. Photoelectrochemical determination of Cu2+ ions based on assembly of Au/ZnS nanoparticles. Sens. Actuator B Chem. 2016, 235, 432–438. [Google Scholar] [CrossRef]
- Tian, J.Q.; Liu, Q.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X.P. Ultrathin Graphitic Carbon Nitride Nanosheet: A Highly Efficient Fluorosensor for Rapid, Ultrasensitive Detection of Cu2+. Anal. Chem. 2013, 85, 5595–5599. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Ge, F.; Chen, X.C.; Li, Y.; Zhang, H.; Zhao, B.X.; Miao, J.Y. A new probe for fluorescent recognition of Hg2+ in living cells and colorimetric detection of Cu2+ in aqueous solution. Sens. Actuators B Chem. 2013, 182, 273–279. [Google Scholar] [CrossRef]
- Dong, R.H.; Liu, Y.; Mou, L.; Deng, J.Q.; Jiang, X.Y. Microfluidics-Based Biomaterials and Biodevices. Adv. Mater. 2019, 31, 1805033. [Google Scholar] [CrossRef]
- Yang, M.Z.; Liu, Y.; Jiang, X.Y. Barcoded point-of-care bioassays. Chem. Soc. Rev. 2019, 48, 850–884. [Google Scholar] [CrossRef]
- Rodrigues, R.O.; Sousa, P.C.; Gaspar, J.; Banobre-Lopez, M.; Lima, R.; Minas, G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small 2020, 16, 2003517. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Campbell, A.S.; de Avila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.F.; Wang, Y.; Dong, M.L.; Wu, J.; Ran, B.; Xie, M.X.; Joo, S.W.; Chen, Y.P. One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation. Biosens. Bioelectron. 2016, 86, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.F.; Zheng, W.S.; Dong, M.L.; Yu, W.B.; Chen, Y.P.; Joo, S.W.; Jiang, X.Y. An enzyme-mediated competitive colorimetric sensor based on Au@Ag bimetallic nanoparticles for highly sensitive detection of disease biomarkers. Analyst 2017, 142, 2954–2960. [Google Scholar] [CrossRef]
- Idros, N.; Chu, D.P. Triple-Indicator-Based Multidimensional Colorimetric Sensing Platform for Heavy Metal Ion Detections. ACS Sens. 2018, 3, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.F.; Qian, C.C.; Wang, S.B.; Wan, X.H.; Zhou, T. A Microfluidic Chip-Based MRS Immunosensor for Biomarker Detection via Enzyme-Mediated Nanoparticle Assembly. Front. Chem. 2021, 9, 688442. [Google Scholar] [CrossRef]
- Yin, B.; Wan, X.; Qian, C.; Sohan, A.S.M.M.F.; Wang, S.; Zhou, T. Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip. Front. Chem. 2021, 9, 741058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Q.; Lang, Y.H.; Jiang, X.; Wu, P. Rationale of 3,3′,5,5′-Tetramethylbenzidine as the Chromogenic Substrate in Colorimetric Analysis. Anal. Chem. 2020, 92, 12400–12406. [Google Scholar] [CrossRef] [PubMed]
- Xianyu, Y.L.; Zhu, K.; Chen, W.W.; Wang, X.F.; Zhao, H.M.; Sun, J.S.; Wang, Z.; Jiang, X.Y. Enzymatic Assay for Cu(II) with Horseradish Peroxidase and Its Application in Colorimetric Logic Gate. Anal. Chem. 2013, 85, 7029–7032. [Google Scholar] [CrossRef] [PubMed]
Naked Eyes | Spectrophotometer | ICP-OES | |
---|---|---|---|
Sample 1 | polluted | 218.74 μM | 217.31 μM |
Sample 2 | polluted | 21.29 μM | 19.78 μM |
Sample 3 | unpolluted | 14.57 nM | 14.31 nM |
Location | Sampling site | Lab | Lab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, B.; Wan, X.; Qian, C.; Sohan, A.S.M.M.F.; Zhou, T.; Yue, W. Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions. Micromachines 2021, 12, 1380. https://doi.org/10.3390/mi12111380
Yin B, Wan X, Qian C, Sohan ASMMF, Zhou T, Yue W. Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions. Micromachines. 2021; 12(11):1380. https://doi.org/10.3390/mi12111380
Chicago/Turabian StyleYin, Binfeng, Xinhua Wan, Changcheng Qian, A. S. M. Muhtasim Fuad Sohan, Teng Zhou, and Wenkai Yue. 2021. "Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions" Micromachines 12, no. 11: 1380. https://doi.org/10.3390/mi12111380
APA StyleYin, B., Wan, X., Qian, C., Sohan, A. S. M. M. F., Zhou, T., & Yue, W. (2021). Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions. Micromachines, 12(11), 1380. https://doi.org/10.3390/mi12111380