Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids and Media
2.2. Genomic Sequencing and Sequence Analysis
2.3. Polymerase Chain Reaction (PCR)
2.4. Transposon Mutagenesis, Cloning and DNA Purification
2.5. Minimal Inhibitory Concentrations (MICs)
2.6. RNA Purification, cDNA Synthesis and Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)
3. Results and Discussion
3.1. Potential MerR Sensors Switches in S. maltophilia 02 and Enterobacter sp. YSU
3.2. Potential Enterobacter sp. YSU Zinc Sensor Switch, ZntR
3.3. Potential Enterobacter sp. YSU Copper Sensor Switch, CueR
3.4. Potential S. maltophilia 02 Gold and Copper Sensor Switch, CueR
3.5. Other Reporter Genes for MerR Family Biosensors
3.6. Improving the Sensitivity and Specificity of MerR Family Biosensors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Checa, S.K.; Zurbriggen, M.D.; Soncini, F.C. Bacterial signaling systems as platforms for rational design of new generations of biosensors. Curr. Opin. Biotechnol. 2012, 23, 766–772. [Google Scholar] [CrossRef]
- Hakkila, K.; Maksimow, M.; Karp, M.; Virta, M. Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal. Biochem. 2002, 301, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Jouanneau, S.; Durand, M.-J.; Courcoux, P.; Blusseau, T.; Thouand, G. Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ. Sci. Technol. 2011, 45, 2925–2931. [Google Scholar] [CrossRef] [PubMed]
- Grinsted, J.; de la Cruz, F.; Schmitt, R. The Tn21 subgroup of bacterial transposable elements. Plasmid 1990, 24, 163–189. [Google Scholar] [CrossRef]
- Shewchuk, L.M.; Verdine, G.L.; Walsh, C.T. Transcriptional switching by the metalloregulatory MerR protein: Initial characterization of DNA and mercury (II) binding activities. Biochemistry 1989, 28, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Shewchuk, L.M.; Helmann, J.D.; Ross, W.; Park, S.J.; Summers, A.O.; Walsh, C.T. Transcriptional switching by the MerR protein: Activation and repression mutants implicate distinct DNA and mercury (II) binding domains. Biochemistry 1989, 28, 2340–2344. [Google Scholar] [CrossRef] [PubMed]
- Liebert, C.A.; Hall, R.M.; Summers, A.O. Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 1999, 63, 507–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, A.M.; Chartone-Souza, E. Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. 2003, 2, 92–101. [Google Scholar]
- Kiyono, M.; Sone, Y.; Nakamura, R.; Pan-Hou, H.; Sakabe, K. The MerE protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Lett. 2009, 583, 1127–1131. [Google Scholar] [CrossRef] [Green Version]
- Hamlett, N.V.; Landale, E.C.; Davis, B.H.; Summers, A.O. Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J. Bacteriol. 1992, 174, 6377–6385. [Google Scholar]
- Silver, S.; Phung, L.T. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 1996, 50, 753–789. [Google Scholar] [CrossRef] [PubMed]
- Summers, A.O. Untwist and shout: A heavy metal-responsive transcriptional regulator. J. Bacteriol. 1992, 174, 3097–3101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, D.; Yu, H.R.; Nucifora, G.; Misra, T.K. Purification and functional characterization of MerD. A coregulator of the mercury resistance operon in Gram-negative bacteria. J. Biol. Chem. 1991, 266, 18538–18542. [Google Scholar] [CrossRef]
- Champier, L.; Duarte, V.; Michaud-Soret, I.; Covès, J. Characterization of the MerD protein from Ralstonia metallidurans CH34: A possible role in bacterial mercury resistance by switching off the induction of the mer operon. Mol. Microbiol. 2004, 52, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Huang, S.; Liu, P.; Liu, X.; He, Y.; Chen, W.; Hu, Q.; Wei, T.; Gan, J.; Ma, J.; et al. Structural analysis of the Hg(II)-regulatory protein Tn501 MerR from Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 33391. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Lin, L.-Y.; Zou, X.-W.; Huang, C.-C.; Chan, N.-L. Structural basis of the mercury (II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res. 2015, 43, 7612–7623. [Google Scholar] [CrossRef] [Green Version]
- Changela, A.; Chen, K.; Xue, Y.; Holschen, J.; Outten, C.E.; O’Halloran, T.V.; Mondragon, A. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 2003, 301, 1383–1387. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Stalhandske, C.; Anderson, M.C.; Scott, R.A.; Summers, A.O. The core metal-recognition domain of MerR. Biochemistry 1998, 37, 15885–15895. [Google Scholar] [CrossRef]
- Aoyama, T.; Takanami, M.; Ohtsuka, E.; Taniyama, Y.; Marumoto, R.; Sato, H.; Ikehara, M. Essential structure of E. coli promoter: Effect of spacer length between the two consensus sequences on promoter function. Nucleic Acids Res. 1983, 11, 5855–5864. [Google Scholar] [CrossRef] [Green Version]
- Parkhill, J.; Brown, N.L. Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Res. 1990, 18, 5157–5162. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.-B.; Johs, A.; Parks, J.M.; Olliff, L.; Miller, S.M.; Summers, A.O.; Liang, L.; Smith, J.C. Structure and conformational dynamics of the metalloregulator MerR upon binding of Hg(II). J. Mol. Biol. 2010, 398, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.Z.; Bradner, J.E.; O’Halloran, T.V. DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 1995, 374, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Ross, W.; Park, S.J.; Summers, A.O. Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. J. Bacteriol. 1989, 171, 4009–4018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.H. A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria; Cold Spring Harbor Laboratory Press: Plainview, NY, USA, 1992; ISBN 0-87969-349-5. [Google Scholar]
- Hansen, L.H.; Sørensen, S.J. Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol. Lett. 2000, 193, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Environmental Protection Agency. 2018 Edition of the Drinking Water Standards and Health Advisories; (EPA 822-F-18-001); U.S. Environmental Protection Agency: Washington, DC, USA, 2018.
- Hobman, J.L. MerR family transcription activators: Similar designs, different specificities. Mol. Microbiol. 2007, 63, 1275–1278. [Google Scholar] [CrossRef]
- Brown, N.L.; Stoyanov, J.V.; Kidd, S.P.; Hobman, J.L. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 2003, 27, 145–163. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.; Vinayak, A.; Benton, C.; Esbenshade, A.; Heinselman, C.; Frankland, D.; Kulkarni, S.; Kurtanich, A.; Caguiat, J. Comparison of two multimetal resistant bacterial strains: Enterobacter sp. YSU and Stenotrophomonas maltophilia ORO2. Curr. Microbiol. 2009, 59, 526–531. [Google Scholar] [CrossRef]
- Metcalf, W.W.; Jiang, W.; Wanner, B.L. Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kλ origin plasmids at different copy numbers. Gene 1994, 138, 1–7. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Tatusova, T.A.; Madden, T.L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 1999, 174, 247–250. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Haft, D.H.; DiCuccio, M.; Badretdin, A.; Brover, V.; Chetvernin, V.; O’Neill, K.; Li, W.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; et al. RefSeq: An update on prokaryotic genome annotation and curation. Nucleic Acids Res. 2018, 46, D851–D860. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; Di Cuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Goryshin, I.Y.; Jendrisak, J.; Hoffman, L.M.; Meis, R.; Reznikoff, W.S. Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 2000, 18, 97–100. [Google Scholar] [CrossRef]
- Hoffman, L.M.; Jendrisak, J.J.; Meis, R.J.; Goryshin, I.Y.; Reznikoff, W.S. Transposome insertional mutagenesis and direct sequencing of microbial genomes. Genetica 2000, 108, 19–24. [Google Scholar]
- Caguiat, J.J. Generation of Enterobacter sp. YSU auxotrophs using transposon mutagenesis. J. Vis. Exp. 2014, e51934. [Google Scholar] [CrossRef] [Green Version]
- Heltzel, A.; Lee, I.W.; Totis, P.A.; Summers, A.O. Activator-dependent preinduction binding of σ-70 RNA polymerase at the metal-regulated mer promoter. Biochemistry 1990, 29, 9572–9584. [Google Scholar] [CrossRef]
- Capdevila, D.A.; Wang, J.; Giedroc, D.P. Bacterial strategies to maintain zinc metallostasis at the host-pathogen interface. J. Biol. Chem. 2016, 291, 20858–20868. [Google Scholar] [CrossRef] [Green Version]
- Brocklehurst, K.R.; Hobman, J.L.; Lawley, B.; Blank, L.; Marshall, S.J.; Brown, N.L.; Morby, A.P. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 1999, 31, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Rensing, C.; Fan, B.; Sharma, R.; Mitra, B.; Rosen, B.P. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 2000, 97, 652–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoyanov, J.V.; Browns, N.L. The Escherichia coli copper-responsive copA promoter is activated by gold. J. Biol. Chem. 2003, 278, 1407–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.; Philips, S.J.; Wu, X.; Chen, K.; Shi, J.; Shen, L.; Xu, J.; Feng, Y.; O’Halloran, T.V.; Zhang, Y. CueR activates transcription through a DNA distortion mechanism. Nat. Chem. Biol. 2021, 17, 57–64. [Google Scholar] [CrossRef]
- Stoyanov, J.V.; Hobman, J.L.; Brown, N.L. CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol. Microbiol. 2001, 39, 502–511. [Google Scholar] [CrossRef]
- Checa, S.K.; Espariz, M.; Audero, M.E.P.; Botta, P.E.; Spinelli, S.V.; Soncini, F.C. Bacterial sensing of and resistance to gold salts. Mol. Microbiol. 2007, 63, 1307–1318. [Google Scholar] [CrossRef]
- Pontel, L.B.; Audero, M.E.P.; Espariz, M.; Checa, S.K.; Soncini, F.C. GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol. Microbiol. 2007, 66, 814–825. [Google Scholar] [CrossRef]
- Espariz, M.; Checa, S.K.; Audero, M.E.P.; Pontel, L.B.; Soncini, F.C. Dissecting the Salmonella response to copper. Microbiology 2007, 153, 2989–2997. [Google Scholar] [CrossRef] [Green Version]
- Humbert, M.V.; Rasia, R.M.; Checa, S.K.; Soncini, F.C. Protein signatures that promote operator selectivity among paralog MerR monovalent metal ion regulators. J. Biol. Chem. 2013, 288, 20510–20519. [Google Scholar] [CrossRef] [Green Version]
- Pérez Audero, M.E.; Podoroska, B.M.; Ibáñez, M.M.; Cauerhff, A.; Checa, S.K.; Soncini, F.C. Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Mol. Microbiol. 2010, 78, 853–865. [Google Scholar] [CrossRef]
- Alkorta, I.; Epelde, L.; Mijangos, I.; Amezaga, I.; Garbisu, C. Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils. Rev. Environ. Health 2006, 21, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Lee, W.; Kim, S.; Jang, G.; Kim, B.-G.; Yoon, Y. Enhancing the copper-sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering. Appl. Microbiol. Biotechnol. 2018, 102, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, H.; Alam, A.; Gireesh-Babu, P.; Das, R.; Kishore, P.; Kumar, S.; Chaudhari, A. A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment. J. Environ. Sci. 2012, 24, 963–968. [Google Scholar] [CrossRef]
- Stoyanov, J.V.; Magnani, D.; Solioz, M. Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett. 2003, 546, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Selifonova, O.; Burlage, R.; Barkay, T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl. Environ. Microbiol. 1993, 59, 3083–3090. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, L.D.; Turner, R.R.; Barkay, T. Cell-density-dependent sensitivity of a mer-lux bioassay. Appl. Environ. Microbiol. 1997, 63, 3291–3293. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.; Ren, X.; Li, J.; Liang, F.; Rao, X.; Gao, Y.; Wu, W.; Li, D.; Wang, J.; Zhao, J.; et al. Development of a sensitive Escherichia coli bioreporter without antibiotic markers for detecting bioavailable copper in water environments. Front. Microbiol. 2020, 10, 3031. [Google Scholar] [CrossRef]
- Özyurt, C.; Üstükarcı, H.; Evran, S.; Telefoncu, A. MerR-fluorescent protein chimera biosensor for fast and sensitive detection of Hg2+ in drinking water. Biotechnol. Appl. Biochem. 2019, 66, 731–737. [Google Scholar] [CrossRef]
- Caguiat, J.; Watson, A.; Summers, A. Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J. Bacteriol. 1999, 181, 3462–3471. [Google Scholar] [CrossRef] [Green Version]
- Hakkila, K.M.; Nikander, P.A.; Junttila, S.M.; Lamminmäki, U.J.; Virta, M.P. Cd-specific mutants of mercury-sensing regulatory protein MerR, generated by directed evolution. Appl. Environ. Microbiol. 2011, 77, 6215–6224. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Jang, G.; Kim, B.G.; Yoon, Y. Modulation of the metal(loid) specificity of whole-cell bioreporters by genetic engineering of ZntR metal-binding loops. J. Microbiol. Biotechnol. 2020, 30, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, M.M.; Checa, S.K.; Soncini, F.C. A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J. Bacteriol. 2015, 197, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Van der Meer, J.R.; Belkin, S. Where microbiology meets microengineering: Design and applications of reporter bacteria. Nat. Rev. Microbiol. 2010, 8, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Turdean, G.L. Design and development of biosensors for the detection of heavy metal toxicity. Int. J. Electrochem. 2011, 2011, 343125. [Google Scholar] [CrossRef]
- Melamed, S.; Elad, T.; Belkin, S. Microbial sensor cell arrays. Curr. Opin. Biotechnol. 2012, 23, 2–8. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baya, G.; Muhindi, S.; Ngendahimana, V.; Caguiat, J. Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02. Micromachines 2021, 12, 142. https://doi.org/10.3390/mi12020142
Baya G, Muhindi S, Ngendahimana V, Caguiat J. Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02. Micromachines. 2021; 12(2):142. https://doi.org/10.3390/mi12020142
Chicago/Turabian StyleBaya, Georgina, Stephen Muhindi, Valentine Ngendahimana, and Jonathan Caguiat. 2021. "Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02" Micromachines 12, no. 2: 142. https://doi.org/10.3390/mi12020142
APA StyleBaya, G., Muhindi, S., Ngendahimana, V., & Caguiat, J. (2021). Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02. Micromachines, 12(2), 142. https://doi.org/10.3390/mi12020142