Micromotor Manipulation Using Ultrasonic Active Traveling Waves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Principles for Acoustic Radiation Force
2.2. Analysis of Ultrasonic Transducer Array Model
2.3. Design of Control System
2.4. Micromotors for Drug Delivery System
3. Results
3.1. Experimental Setup
3.2. 2D and 3D Micromotor Manipulation
3.3. Ex Vivo Experiment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maric, T.; Nasir, M.Z.M.; Rosli, N.F.; Budanović, M.; Webster, R.D.; Cho, N.J.; Pumera, M. Microrobots Derived from Variety Plant Pollen Grains for Efficient Environmental Clean Up and as an Anti-Cancer Drug Carrier. Adv. Funct. Mater. 2020, 30, 1–13. [Google Scholar] [CrossRef]
- Maric, T.; Beladi-Mousavi, S.M.; Khezri, B.; Sturala, J.; Nasir, M.Z.M.; Webster, R.D.; Sofer, Z.; Pumera, M. Functional 2D Germanene Fluorescent Coating of Microrobots for Micromachines Multiplexing. Small 2020, 16, 1–6. [Google Scholar] [CrossRef] [PubMed]
- De Ávila, B.E.F.; Angsantikul, P.; Li, J.; Angel Lopez-Ramirez, M.; Ramírez-Herrera, D.E.; Thamphiwatana, S.; Chen, C.; Delezuk, J.; Samakapiruk, R.; Ramez, V.; et al. Micromotor-Enabled Active Drug Delivery for in vivo Treatment of Stomach Infection. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Medina-Sánchez, M.; Xu, H.; Schmidt, O.G. Micro- and Nano-Motors: The New Generation of Drug Carriers. Ther. Deliv. 2018, 9, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Servant, A.; Qiu, F.; Mazza, M.; Kostarelos, K.; Nelson, B.J. Controlled in Vivo Swimming of a Swarm of Bacteria-like Microrobotic Flagella. Adv. Mater. 2015, 27, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Franklin, A.; Marzo, A.; Malkin, R.; Drinkwater, B.W. Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducer. Appl. Phys. Lett. 2017, 111, 094101. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yuan, J.; Wu, D.; Zou, X.; Zheng, Q.; Zhang, W.; Lei, H. All-Optical Targeted Drug Delivery and Real-Time Detection of a Single Cancer Cell. Nanophotonics 2020, 9, 611–622. [Google Scholar] [CrossRef]
- Xie, H.; Sun, M.; Fan, X.; Lin, Z.; Chen, W.; Wang, L.; Dong, L.; He, Q. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Sci. Robot. 2019, 4. [Google Scholar] [CrossRef]
- Uvet, H.; Demircali, A.A.; Kahraman, Y.; Varol, R.; Kose, T.; Erkan, K. Micro-UFO (untethered floating object): A highly accurate microrobot manipulation technique. Micromachines 2018, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Ali, J.; Cheang, U.K.; Jeong, J.; Kim, J.S.; Kim, M.J. Micro manipulation using magnetic microrobots. J. Bionic Eng. 2016, 13, 515–524. [Google Scholar] [CrossRef]
- Sriphutkiat, Y.; Zhou, Y. Particle manipulation using standing acoustic waves in the microchannel at dual-frequency excitation: Effect of power ratio. Sens. Actuator A Phys. 2017, 263, 521–529. [Google Scholar] [CrossRef]
- Go, G.; Jin, Z.; Park, J.O.; Park, S. A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents. Int. J. Control Autom. Syst. 2018, 16, 1341–1354. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, S.; Go, G.; Lee, C.; Zhen, J.; Ko, S.Y.; Park, J.O.; Park, S. Equitranslational and axially rotational microrobot using electromagnetic actuation system. Int. J. Control Autom. Syst. 2017, 15, 1342–1350. [Google Scholar] [CrossRef]
- Bae, J.P.; Yoon, S.; Vania, M.; Lee, D. Three dimensional microrobot tracking using learning-based system. Int. J. Control Autom. Syst. 2020, 18, 21–28. [Google Scholar] [CrossRef]
- Sitti, M.; Wiersma, D.S. Pros and cons: Magnetic versus optical microrobots. Adv. Mater. 2020, 32, 1906766. [Google Scholar] [CrossRef] [PubMed]
- Foresti, D.; Nabavi, M.; Klingauf, M.; Ferrari, A.; Poulikakos, D. Acoustophoretic contactless transport and handling of matter in air. Proc. Natl. Acad. Sci. USA 2013, 110, 12549–12554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drinkwater, B.W. Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab Chip 2016, 16, 2360–2375. [Google Scholar] [CrossRef] [Green Version]
- Bruus, H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip 2012, 12, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Go, G.; Choi, E.; Kang, B.; Park, J.O.; Kim, C.S. Medical microrobot-wireless manipulation of a drug delivery carrier through an external ultrasonic actuation: Preliminary results. Int. J. Control Autom. Syst. 2020, 18, 175–185. [Google Scholar] [CrossRef]
- Marzo, A.; Barnes, A.; Drinkwater, B.W. TinyLev: A multi-emitter single-axis acoustic levitator. Rev. Sci. Instrum. 2017, 88, 085105. [Google Scholar] [CrossRef] [PubMed]
- Prisbrey, M.; Raeymaekers, B. Ultrasound noncontact particle manipulation of three-dimensional dynamic user-specified patterns of particles in air. Phys. Rev. Appl. 2018, 10, 034066. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Ming, D.; Tan, C.S.; Lin, B. Acoustic trapping with 3-D manipulation. Appl. Acoust. 2019, 155, 216–221. [Google Scholar] [CrossRef]
- Lim, H.G.; Kim, H.H.; Yoon, C.; Shung, K.K. A one-sided acoustic trap for cell immobilization using 30-mhz array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 67, 167–172. [Google Scholar] [CrossRef]
- Marzo, A.; Seah, S.A.; Drinkwater, B.W.; Sahoo, D.R.; Long, B.; Subramanian, S. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanem, M.A.; Maxwell, A.D.; Wang, Y.N.; Cunitz, B.W.; Khokhlova, V.A.; Sapozhnikov, O.A.; Bailey, M.R. Noninvasive acoustic manipulation of objects in a living body. Proc. Natl. Acad. Sci. USA 2020, 117, 16848–16855. [Google Scholar] [CrossRef]
- Huynh, Q.B.; Pham, H.Q.; Nguyen, N.T.; Le, T.Q.; Van Toi, V. Modeling of Acoustic Tweezers for the Manipulation in Biological Media. In Proceedings of the IFMBE Proceedings, Ho Chi Minh City, Vietnam, 27–29 June 2018; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Marzo, A.; Corkett, T.; Drinkwater, B.W. Ultraino: An open phased-array system for narrowband airborne ultrasound transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 65, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, F.; Li, Y.; Hsu, H.S.; Liu, C.; Tat Chiu, C.; Lee, C.; Ham Kim, H.; Shung, K.K. Acoustic trapping with a high frequency linear phased array. Appl. Phys. Lett. 2012, 101, 214104. [Google Scholar] [CrossRef]
- Go, G.; Jeong, S.G.; Yoo, A.; Han, J.; Kang, B.; Kim, S.; Nguyen, K.T.; Jin, Z.; Kim, C.S.; Seo, Y.R.; et al. Human Adipose-Derived Mesenchymal Stem Cell-Based Medical Microrobot System for Knee Cartilage Regeneration in vivo. Sci. Robot. 2020, 5. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Hoang, M.C.; Choi, E.; Kang, B.; Park, J.O.; Kim, C.S. Medical microrobot—A drug delivery capsule endoscope with active locomotion and drug release mechanism: Proof of concept. Int. J. Control Autom. Syst. 2020, 18, 65–75. [Google Scholar] [CrossRef]
Distance from the focal point [mm] | −6 | −4 | −2 | 0 | 2 | 4 | 6 |
Pressure [kPa] | 269 | 410 | 194 | 722 | 139 | 495 | 108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.X.; Jung, D.; Lee, H.-S.; Go, G.; Nan, M.; Choi, E.; Kim, C.-S.; Park, J.-O.; Kang, B. Micromotor Manipulation Using Ultrasonic Active Traveling Waves. Micromachines 2021, 12, 192. https://doi.org/10.3390/mi12020192
Cao HX, Jung D, Lee H-S, Go G, Nan M, Choi E, Kim C-S, Park J-O, Kang B. Micromotor Manipulation Using Ultrasonic Active Traveling Waves. Micromachines. 2021; 12(2):192. https://doi.org/10.3390/mi12020192
Chicago/Turabian StyleCao, Hiep Xuan, Daewon Jung, Han-Sol Lee, Gwangjun Go, Minghui Nan, Eunpyo Choi, Chang-Sei Kim, Jong-Oh Park, and Byungjeon Kang. 2021. "Micromotor Manipulation Using Ultrasonic Active Traveling Waves" Micromachines 12, no. 2: 192. https://doi.org/10.3390/mi12020192
APA StyleCao, H. X., Jung, D., Lee, H. -S., Go, G., Nan, M., Choi, E., Kim, C. -S., Park, J. -O., & Kang, B. (2021). Micromotor Manipulation Using Ultrasonic Active Traveling Waves. Micromachines, 12(2), 192. https://doi.org/10.3390/mi12020192