Design and Simulation of Air-Breathing Micro Direct Methanol Fuel Cells with Different Anode Flow Fields
Abstract
:1. Introduction
2. Computational Model
2.1. Flow Field Design
2.2. Model Description and Assumption
- (1)
- All processes in the µDMFCs are under steady-state conditions.
- (2)
- The average hole transfer model is applied in the diffusion layer.
- (3)
- The catalyst layer is simplified as a plane without thickness.
- (4)
- The CO2 generated at the anode dissolves in water completely, and its influence is ignored.
- (5)
- The methanol density in the anode flow channel is considered as a constant and it belongs to the incompressible flow.
- (6)
- The influence of gravity is ignored.
2.3. Governing Equations
- (1)
- Navier–Stokes (N-S) Equation
- (2)
- Diffusion-Convection Equation
- (3)
- Darcy’s Law
- (4)
- Ohm’s Law
- (5)
- Butler–Volmer (B-V) Equation
2.4. Boundary Conditions
- (1)
- N-S Equation
- (2)
- Diffusion-Convection Equation
- (3)
- Darcy’s Law
- (4)
- B-V Equation
- (5)
- Ohm’s Law
2.5. Solution Procedure
3. Simulation Results and Discussion
3.1. Analysis of Four Anode Flow Fields
3.2. Different Open Ratios of Single-Serpentine Flow Fields
3.3. Different Channel Lengths of Single-Serpentine Flow Fields
4. Experimental Verification
4.1. Fabrication and Assembly
4.2. Test
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alias, M.; Kamarudin, S.; Zainoodin, A.; Masdar, M. Active direct methanol fuel cell: An overview. Int. J. Hydrog. Energy 2020, 45, 19620–19641. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, X.; Sun, H.; Wang, S.; Sun, G. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy 2019, 65, 104048. [Google Scholar] [CrossRef]
- Chen, X.; Li, T.; Shen, J.; Hu, Z. From structures, packaging to application: A system-level review for micro direct methanol fuel cell. Renew. Sustain. Energy Rev. 2017, 80, 669–678. [Google Scholar] [CrossRef]
- Munjewar, S.S.; Thombre, S.B.; Mallick, R.K. A comprehensive review on recent material development of passive direct methanol fuel cell. Ionics 2016, 23, 1–18. [Google Scholar] [CrossRef]
- Falcao, D.S.; Oliveira, V.B.; Rangel, C.M.; Pinto, A.M.F.R. Review on micro-direct methanol fuel cells. Renew. Sustain. Energy Rev. 2014, 34, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Dutta, K.; Das, S.; Kundu, P.P. An overview of unsolved deficiencies of direct methanol fuel cell technology: Factors and parameters affecting its widespread use. Int. J. Energy Res. 2014, 38, 1367–1390. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Shen, J.; Hu, Z. Micro direct methanol fuel cell: Functional components, supplies management, packaging technology and application. Int. J. Energy Res. 2017, 41, 613–627. [Google Scholar] [CrossRef]
- Mallick, R.K.; Thombre, S.B.; Shrivastava, N.K. A critical review of the current collector for passive direct methanol fuel cells. J. Power Sources 2015, 285, 510–529. [Google Scholar] [CrossRef]
- Wang, L.; Yin, L.; Yang, W.; Cheng, Y.; Feng, X. Evaluation of structural aspects and operation environments on the performance of passive micro direct methanol fuel cell. Int. J. Hydrog. Energy 2020, 46, 2594–2605. [Google Scholar] [CrossRef]
- Braz, B.A.; Moreira, C.S.; Oliveira, V.B.; Pinto, A.M.F.R. Effect of the current collector design on the performance of a passive direct methanol fuel cell. Electrochim. Acta 2019, 300, 306–315. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, J.; Li, X.; Wang, S. The micro-scale analysis of the micro direct methanol fuel cell. Energy 2016, 100, 10–17. [Google Scholar] [CrossRef]
- Rao, A.S.; Rashmi, K.R.; Manjunatha, D.V.; Jayarama, A.; Pinto, R. Enhancement of power output in passive micro direct methanol fuel cells with optimized methanol concentration and trapezoidal flow channels. J. Micromech. Microeng. 2019, 29, 075006. [Google Scholar] [CrossRef]
- Hu, X.Q.; Yang, Q.W.; Xiao, G.; Chen, X.T.; Qiu, X. Power generation enhancement in direct methanol fuel cells using non-uniform cross-sectional serpentine channels. Energy Convers. Manag. 2019, 188, 438–446. [Google Scholar] [CrossRef]
- El-Zoheiry, R.M.; Ookawara, S.; Ahmed, M. Efficient fuel utilization by enhancing the under-rib mass transport using new serpentine flow field designs of direct methanol fuel cells. Energy Convers. Manag. 2017, 144, 88–103. [Google Scholar] [CrossRef]
- Chen, W.; Yuan, W.; Ye, G.; Han, F.; Tang, Y. Utilization and positive effects of produced CO 2 on the performance of a passive direct methanol fuel cell with a composite anode structure. Int. J. Hydrog. Energy 2017, 42, 15613–15622. [Google Scholar] [CrossRef]
- Liang, J.; Liu, K.; Li, S.; Wang, D.; Ren, T.; Xu, X.; Luo, Y. Novel Flow Field with Superhydrophobic Gas Channels Prepared by One-step Solvent-induced Crystallization for Micro Direct Methanol Fuel Cell. Nano-Micro Lett. 2015, 7, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.H.; Zhao, T.S.; An, L.; Zhao, G.; Zeng, L. A micro-porous current collector enabling passive direct methanol fuel cells to operate with highly concentrated fuel—ScienceDirect. Electrochim. Acta 2014, 139, 7–12. [Google Scholar] [CrossRef]
- Ouellette, D.; Ozden, A.; Ercelik, M.; Colpan, C.O.; Ganjehsarabi, H.; Li, X.; Hamdullahpur, F. Assessment of different bio-inspired flow fields for direct methanol fuel cells through 3D modeling and experimental studies. Int. J. Hydrog. Energy 2017, 43, 1152–1170. [Google Scholar] [CrossRef]
- Ozden, A.; Ercelik, M.; Ouellette, D.; Colpan, C.O.; Ganjehsarabi, H.; Hamdullahpur, F. Designing, modeling and performance investigation of bio-inspired flow field based DMFCs. Int. J. Hydrog. Energy 2017, 42, 21546–21558. [Google Scholar] [CrossRef]
Type of Flow Field | Effective Width (mm) | Channel Depth (mm) | Ridge Width (mm) | Effective Area (mm × mm) | Open Ratio (%) |
---|---|---|---|---|---|
Grid flow field | 0.55 | 0.24 | 0.69 | 7.99 × 7.99 | 72.9 |
Parallel flow field | 0.75 | 0.24 | 0.45 | 7.95 × 7.95 | 72.9 |
Single-serpentine flow field | 0.8 | 0.24 | 0.4 | 8.0 × 8.0 | 73.0 |
Double-serpentine flow field | 0.575 | 0.24 | 0.25 | 8.0 × 8.0 | 73.6 |
Open Ratio (%) | Width of Channel (mm) | Channel Depth (mm) | Width of Ridge (mm) | Length of Channel (mm) | Active Area (mm × mm) |
---|---|---|---|---|---|
29.1 | 0.3 | 0.24 | 0.98 | 63.68 | 7.98 × 7.98 |
47.3 | 0.5 | 0.24 | 0.75 | 63.50 | 8.0 × 8.0 |
60.6 | 0.65 | 0.24 | 0.57 | 63.32 | 7.97 × 7.97 |
73.0 | 0.8 | 0.24 | 0.4 | 63.20 | 8.0 × 8.0 |
Length of Channel (mm) | Width of Channel (mm) | Depth of Channel (mm) | Width of Ridge (mm) | Open Ratio (%) | Effective Size (mm × mm) |
---|---|---|---|---|---|
47.32 | 0.68 | 0.24 | 1.15 | 47.4 | 8.0 × 8.0 |
63.50 | 0.5 | 0.24 | 0.75 | 47.3 | 8.0 × 8.0 |
79.60 | 0.4 | 0.24 | 0.55 | 47.8 | 8.0 × 8.0 |
96.03 | 0.33 | 0.24 | 0.44 | 47.5 | 8.03 × 8.03 |
Parameter Names | Parameter Values |
---|---|
Faraday constant ( | |
Gas law constant () | |
Standard value () | |
Standard diffusion coefficient of the methanol in the water () | |
Electrical conductivity of the electron () | |
Density of the methanol solution () | |
Standard consistence of the methanol () | |
Exchange current density at the anode () | |
Viscosity coefficient of the methanol solution () | |
permeability () | |
overvoltage () | |
porosity () | 0.6 |
Working temperature () | 293 K |
Liquid filling rate () | |
The consistence of methanol () | |
Atmospheric pressure () | |
Specific surface area () | |
Gibbs free energy () | |
Reaction enthalpy () | |
Thermal conductivity () | |
Specific heat capacity at standard pressure () |
Type of Flow Field | Channel Width (mm) | Channel Depth (mm) | Channel Length (mm) | Ridge Width (mm) | Effective Area (mm × mm) | Open Ratio (%) |
---|---|---|---|---|---|---|
Grid flow field | 0.55 | 0.24 | - 1 | 0.69 | 7.99 × 7.99 | 72.9 |
Parallel flow field | 0.75 | 0.24 | - 1 | 0.45 | 7.95 × 7.95 | 72.9 |
Single-serpentine flow field | 0.8 | 0.24 | 63.20 | 0.4 | 8.0 × 8.0 | 73.0 |
Double-serpentine flow field | 0.575 | 0.24 | 43.30 2 | 0.25 | 8.0 × 8.0 | 73.6 |
Single-serpentine flow field | 0.3 | 0.24 | 63.68 | 0.98 | 7.98 × 7.98 | 29.1 |
0.5 | 0.24 | 63.50 | 0.75 | 8.0 × 8.0 | 47.3 | |
0.65 | 0.24 | 63.32 | 0.57 | 7.97 × 7.97 | 60.6 | |
0.8 | 0.24 | 63.20 | 0.4 | 8.0 × 8.0 | 73.0 | |
Single-serpentine flow field | 0.68 | 0.24 | 47.32 | 1.15 | 8.0 × 8.0 | 47.4 |
0.5 | 0.24 | 63.50 | 0.75 | 8.0 × 8.0 | 47.3 | |
0.4 | 0.24 | 79.60 | 0.55 | 8.0 × 8.0 | 47.8 | |
0.33 | 0.24 | 96.03 | 0.44 | 8.03 × 8.03 | 47.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Zhou, J.; Zhang, Y. Design and Simulation of Air-Breathing Micro Direct Methanol Fuel Cells with Different Anode Flow Fields. Micromachines 2021, 12, 253. https://doi.org/10.3390/mi12030253
Deng H, Zhou J, Zhang Y. Design and Simulation of Air-Breathing Micro Direct Methanol Fuel Cells with Different Anode Flow Fields. Micromachines. 2021; 12(3):253. https://doi.org/10.3390/mi12030253
Chicago/Turabian StyleDeng, Huichao, Jiaxu Zhou, and Yufeng Zhang. 2021. "Design and Simulation of Air-Breathing Micro Direct Methanol Fuel Cells with Different Anode Flow Fields" Micromachines 12, no. 3: 253. https://doi.org/10.3390/mi12030253
APA StyleDeng, H., Zhou, J., & Zhang, Y. (2021). Design and Simulation of Air-Breathing Micro Direct Methanol Fuel Cells with Different Anode Flow Fields. Micromachines, 12(3), 253. https://doi.org/10.3390/mi12030253