Dry Film Photoresist-Based Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide Components
Abstract
:1. Introduction
2. Structure and Design of Ridge Gap Waveguide Resonator
3. Materials and Method
3.1. Materials
3.2. Dry Film Lamination Method
3.3. Fabrication Method
3.3.1. Fabrication of the Base Layer
3.3.2. Fabrication of the Device Layer
4. Result and Discussion
4.1. Fabrication Result
4.2. Measurement Result
4.3. Comparative Study with the Existing Technologies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C. Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Trans. Microw. Theory Tech. 2012, 60, 845–860. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Vaidya, N.H.; Zhao, F. A vehicle-to-vehicle communication protocol for cooperative collision warning. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004, Boston, MA, USA, 26–26 August 2004; pp. 114–123. [Google Scholar] [CrossRef]
- Smulders, P.P. Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions. IEEE Commun. Mag. 2002, 40, 140–147. [Google Scholar] [CrossRef]
- Hansen, C.J. WiGiG: Multi-gigabit wireless communications in the 60 GHz band. IEEE Wirel. Commun. 2011, 18, 6–7. [Google Scholar] [CrossRef]
- Blondy, P.; Brown, A.R.; Crost, D.; Rebeiz, G.M. Low loss micromachined filters for millimeter-wave telecommunication systems. In Proceedings of the 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), Baltimore, MD, USA, 7–12 June 1998; Volume 3, pp. 1181–1184. [Google Scholar] [CrossRef]
- Li, Y.; Kirby, P.L.; Papapolymerou, J. Silicon Micromachined W-Band Folded and Straight Waveguides Using DRIE Technique. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 1915–1918. [Google Scholar] [CrossRef]
- Tian, Y.; Shang, X.; Wang, Y.; Lancaster, M.J. Investigation of SU8 as a structural material for fabricating passive millimeter-wave and terahertz components. J. Micro/Nanolithogr. MEMS MOEMS 2015, 14, 044507. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ke, M.; Lancaster, M.J.; Chen, J. Micromachined 300-GHz SU-8-Based Slotted Waveguide Antenna. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 573–576. [Google Scholar] [CrossRef]
- Lorenz, H.; Despont, M.; Fahrni, N.; Labianca, N.C.; Renaud, P.; Vettiger, P. SU-8: A low-cost negative resist for MEMS. J. Micromech. Microeng. 1997, 7, 121–124. [Google Scholar] [CrossRef]
- Smith, C.H.; Barker, N.S. SU-8 micromachining process for millimeter and submillimeter-wave waveguide circuit fabrication. In Proceedings of the 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, 15–19 September 2008; pp. 1–2. [Google Scholar] [CrossRef]
- Iii, C.H.; Xu, H.; Barker, N. Development of a multi-layer SU-8 process for terahertz frequency waveguide blocks. In Proceedings of the Microwave Symposium Digest, 2005 IEEE MTT-S International, Long Beach, CA, USA, 17 June 2005; p. 4. [Google Scholar]
- Liao, Y.-S.; Chen, Y.-T. Precision fabrication of an arrayed micro metal probe by the laser-LIGA process. J. Micromech. Microeng. 2005, 15, 2433–2440. [Google Scholar] [CrossRef]
- Arnaudov, R.; Avdjiiski, B.; Kostov, A.; Videkov, V.; Andreev, S.; Yordanov, N. Novel Microcontacts in Microwave Chip Carriers Developed by UV-LIGA Process. IEEE Trans. Adv. Packag. 2006, 29, 122–130. [Google Scholar] [CrossRef]
- Kirby, P.; Pukala, D.; Manohara, H.; Mehdi, I.; Papapolymerou, J. Characterization of micromachined silicon rectangular waveguide at 400 GHz. IEEE Microw. Wirel. Compon. Lett. 2006, 16, 366–368. [Google Scholar] [CrossRef]
- Chattopadhyay, G.; Ward, J.S.; Manohara, H.; Toda, R. Deep Reactive Ion Etching based silicon micromachined components at terahertz frequencies for space applications. In Proceedings of the 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, 15–19 September 2008; pp. 1–2. [Google Scholar] [CrossRef]
- Leong, K.M.K.H.; Hennig, K.; Zhang, C.; Elmadjian, R.N.; Zhou, Z.; Gorospe, B.S.; Chang-Chien, P.P.; Radisic, V.; Deal, W.R. WR1.5 Silicon Micromachined Waveguide Components and Active Circuit Integration Methodology. IEEE Trans. Microw. Theory Tech. 2012, 60, 998–1005. [Google Scholar]
- Nordquist, C.D.; Wanke, M.C.; Rowen, A.M.; Arrington, C.L.; Lee, M.; Grine, A.D. Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Abada, S.; Salvi, L.; Courson, R.; Daran, E.; Reig, B.; Doucet, J.B.; Camps, T.; Bardinal, V. Comparative study of soft thermal printing and lamination of dry thick photoresist films for the uniform fabrication of polymer MOEMS on small-sized samples. J. Micromech. Microeng. 2017, 27, 055018. [Google Scholar] [CrossRef]
- Rahiminejad, S.; Pucci, E.; Haasl, S.; Enoksson, P. SU8 ridge-gap waveguide resonator. Int. J. Microw. Wirel. Technol. 2014, 6, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Mata, A.; Fleischman, A.J.; Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 2006, 16, 276–284. [Google Scholar] [CrossRef]
- Vollenbroek, F.A.; Spiertz, E.J. Photoresist systems for microlithography. In Electronic Applications; Springer: Berlin/Heidelberg, Germany, 1988; pp. 85–111. [Google Scholar]
- Kukharenka, E.; Farooqui, M.M.; Grigore, L.; Kraft, M.; Hollinshead, N. Electroplating moulds using dry film thick negative photoresist. J. Micromech. Microeng. 2003, 13, S67–S74. [Google Scholar] [CrossRef] [Green Version]
- Vulto, P.; Glade, N.; Altomare, L.; Bablet, J.; Del Tin, L.; Medoro, G.; Chartier, I.; Manaresi, N.; Tartagni, M.; Guerrieri, R. Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip 2005, 5, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Ehrfeld, W.; Hessel, V.; Lowe, H.; Schulz, C.; Weber, L. Materials of LIGA technology. Microsyst. Technol. 1999, 5, 105–112. [Google Scholar] [CrossRef]
- Lorenz, H.; Paratte, L.; Luthier, R.; De Rooij, N.F.; Renaud, P. Low-cost technology for multilayer electroplated parts using laminated dry film resist. Sens. Actuators A Phys. 1996, 53, 364–368. [Google Scholar] [CrossRef]
- Chartier, I.; Sudor, J.; Fouillet, Y.; Sarrut, N.; Bory, C.; Gruss, A. Fabrication of a Hybrid Plastic-Silicon Microfluidic Device for High-Throughput Genotyping; Micromachining and Microfabrication; SPIE: Philadelphia, PA, USA, 2003. [Google Scholar]
- Johnsona, D.W.; Goettertb, J.; Singhb, V.; Yemaneb, D. SUEX Dry Film Resist@—A new Material for High Aspect Ratio Lithography. Mater. Sci. 2012, 1–8. Available online: http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=EB01E22031092747832A299026577D26?doi=10.1.1.651.3557 (accessed on 10 January 2021).
- Rajo-Iglesias, E.; Kildal, P.-S. Numerical studies of bandwidth of parallel-plate cut-off realised by a bed of nails, corrugations and mushroom-type electromagnetic bandgap for use in gap waveguides. IET Microw. Antennas Propag. 2011, 5, 282. [Google Scholar] [CrossRef] [Green Version]
- Kildal, P. Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009; pp. 28–32. [Google Scholar]
- Valero-Nogueira, A.; Alfonso, E.; Herranz, J.; Kildal, P.-S. Experimental Demonstration of Local Quasi-TEM Gap Modes in Single-Hard-Wall Waveguides. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 536–538. [Google Scholar] [CrossRef]
- Valero-Nogueira, A.; Baquero, M.; Herranz-herruzo, J.; Domenech, J.; Alos, E.A.; Vila, A. Gap Waveguides Using a Suspended Strip on a Bed of Nails. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1006–1009. [Google Scholar] [CrossRef]
- Liu, J.; Vosoogh, A.; Zaman, A.U.; Yang, J. A Slot Array Antenna with Single-Layered Corporate-Feed Based on Ridge Gap Waveguide in the 60 GHz Band. IEEE Trans. Antennas Propag. 2018, 67, 1650–1658. [Google Scholar] [CrossRef]
- Vosoogh, A.; Sorkherizi, M.S.; Vassilev, V.; Zaman, A.U.; He, Z.S.; Yang, J.; Kishk, A.A.; Zirath, H. Compact Integrated Full-Duplex Gap Waveguide-Based Radio Front End For Multi-Gbit/s Point-to-Point Backhaul Links at E-Band. IEEE Trans. Microw. Theory Tech. 2019, 67, 3783–3797. [Google Scholar] [CrossRef]
- Vosoogh, A.; Haddadi, A.; Zaman, A.U.; Yang, J.; Zirath, H.; Kishk, A.A. W-Band Low-Profile Monopulse Slot Array Antenna Based on Gap Waveguide Corporate-Feed Network. IEEE Trans. Antennas Propag. 2018, 66, 6997–7009. [Google Scholar] [CrossRef] [Green Version]
- Farjana, S.; Rahiminejad, S.; Zaman, A.U.; Hansson, J.; Ghaderi, M.A.; Haasl, S.; Enoksson, P. Polymer based 140 GHz Planar Gap Waveguide Array Antenna for Line of Sight (LOS) MIMO Backhaul Links. In Proceedings of the 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Bochum, Germany, 16–18 July 2019; pp. 148–150. [Google Scholar] [CrossRef]
- Rahiminejad, S.; Zaman, A.; Pucci, E.; Raza, H.; Vassilev, V.; Haasl, S.; Lundgren, P.; Kildal, P.-S.; Enoksson, P. Micromachined ridge gap waveguide and resonator for millimeter-wave applications. Sens. Actuators A Phys. 2012, 186, 264–269. [Google Scholar] [CrossRef]
- Saleem, A.; Rahiminejad, S.; Desmaris, V.; Enoksson, P. Carbon Nanotubes as Base Material for Fabrication of Gap Waveguide Components. Procedia Eng. 2014, 87, 931–934. [Google Scholar] [CrossRef] [Green Version]
- Rahiminejad, S.; Hansson, J.; Köhler, E.; van der Wijngaart, W.; Haraldsson, T.; Haasl, S.; Enoksson, P. Rapid manufacturing of OSTE polymer RF-MEMS components. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 901–904. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Pucci, E.; Zaman, A.U.; Rajo-Iglesias, E.; Kildal, P.; Kishk, A. Study of Q -factors of ridge and groove gap waveguide resonators. IET Microw. Antennas Propag. 2013, 7, 900–908. [Google Scholar] [CrossRef] [Green Version]
Parameters | Simulated | Measured | ||
---|---|---|---|---|
Frequency (GHz) | 234.6 | 284 | 234 | 283 |
Qu-value | 802 | 938 | 656 | 786 |
Loss (dB/mm) | 0.026 | 0.028 | 0.032 | 0.033 |
Fabrication Method | Simulations | Measurement | foffset (%) | QUoffset (%) | ||||
---|---|---|---|---|---|---|---|---|
f (GHz) | QU | α (dB/m) | f (GHz) | QU | α (dB/m) | |||
First Resonance | ||||||||
Silicon [36] | 234 | 859 | 0.025 | 234 | 642 | 0.033 | 0 | 25.26 |
SU8 [19] | 234 | 859 | 0.025 | 233 | 319 | 0.067 | 0.42 | 62.86 |
CNT [37] | 234 | 859 | 0.025 | 236 | 274 | 0.079 | 0.85 | 68.1 |
OSTE(litho) [38] | 234 | 859 | 0.025 | 238 | 314 | 0.064 | 1.71 | 63.44 |
This work | 234.6 | 802 | 0.026 | 234 | 656 | 0.032 | 0.25 | 18.14 |
Second Resonance | ||||||||
Silicon | 284 | 992 | 0.026 | 283 | 628 | 0.043 | 0.35 | 36.69 |
SU8 | 284 | 992 | 0.026 | 283 | 628 | 0.041 | 0.35 | 36.69 |
CNT | 284 | 992 | 0.026 | 289 | 518 | 0.051 | 1.76 | 47.78 |
OSTE(litho) | 284 | 992 | 0.026 | 292 | 210 | 0.127 | 2.81 | 78.83 |
This work | 284 | 938 | 0.028 | 283 | 786 | 0.033 | 0.35 | 20.76 |
Technology | Silicon | SU8 | CNT | OSTE (litho) | Dry Film | |
---|---|---|---|---|---|---|
Processing step | Surface pretreatment | Dehydration bake, hard mask deposition | Dehydration bake | Dehydration bake | Antistick layer | Dehydration bake |
Lithography step | Process tool * | Process tool ** | Process tool * | Process tool *** | Process tool **** | |
Special processing step | DRIE | none | CVD | Degasification | Lamination | |
Processing time | 15 h/wafer | 10 h/wafer | 10 h/wafer | 3 h/wafer | 3 h/wafer | |
Ability to obtain multiple heights structure | Difficult | Difficult | Not possible | Not possible | Possible with high accuracy | |
Device Performance | Good | Medium | Not satisfactory | Not satisfactory | Good |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farjana, S.; Ghaderi, M.; Rahiminejad, S.; Haasl, S.; Enoksson, P. Dry Film Photoresist-Based Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide Components. Micromachines 2021, 12, 260. https://doi.org/10.3390/mi12030260
Farjana S, Ghaderi M, Rahiminejad S, Haasl S, Enoksson P. Dry Film Photoresist-Based Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide Components. Micromachines. 2021; 12(3):260. https://doi.org/10.3390/mi12030260
Chicago/Turabian StyleFarjana, Sadia, Mohamadamir Ghaderi, Sofia Rahiminejad, Sjoerd Haasl, and Peter Enoksson. 2021. "Dry Film Photoresist-Based Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide Components" Micromachines 12, no. 3: 260. https://doi.org/10.3390/mi12030260
APA StyleFarjana, S., Ghaderi, M., Rahiminejad, S., Haasl, S., & Enoksson, P. (2021). Dry Film Photoresist-Based Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide Components. Micromachines, 12(3), 260. https://doi.org/10.3390/mi12030260