A Sample-In-Answer-Out Microfluidic System for the Molecular Diagnostics of 24 HPV Genotypes Using Palm-Sized Cartridge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Microfluidic System
2.2. On-CARD Fluid Control
2.3. Microarray
2.4. Primers and Probes
2.5. Preparation of Samples and Regents
2.6. Workflow of the Microfluidic System
3. Results and Discussion
3.1. Characterization of Pumping Precision
3.2. Optimization of Reverse Dot Hybridization Assay
3.3. Limit of Detection (LOD)
3.4. Evaluation of Methodology in Clinical Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aynaci, G.; Gusku, Z. Awareness of HPV and HPV vaccination in undergraduate students in the North West region of Turkey: Near future outlook. J. Infect. Dev. Ctries. 2019, 13, 516–525. [Google Scholar] [CrossRef]
- Carneiro, S.R.; Lima, A.A.D.S.; Santos, G.D.F.S.; De Oliveira, C.S.B.; Almeida, M.C.V.; Pinheiro, M.D.C.N. Relationship between Oxidative Stress and Physical Activity in Women with Squamous Intraepithelial Lesions in a Cervical Cancer Control Program in the Brazilian Amazon. Oxidative Med. Cell. Longev. 2019, 2019, 8909852. [Google Scholar] [CrossRef] [Green Version]
- Namvar, A.; Bolhassani, A.; Javadi, G.; Noormohammadi, Z. In silico/In vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Sci. Rep. 2019, 9, 15225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, R.; Vaz, S.; Rebelo, T.; Figueiredo-Dias, M. Prevention of human papillomavirus infection. Beyond cervical cancer: A brief review. Acta Méd. Port. 2020, 33, 198–201. [Google Scholar] [CrossRef]
- Veyer, D.; Wack, M.; Grard, O.; Bonfils, P.; Hans, S.; Belec, L.; Badoual, C.; Pere, H. HPV detection and genotyping of head and neck cancer biopsies by molecular testing with regard to the new oropharyngeal squamous cell carcinoma classification based on HPV status. Pathology 2019, 51, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet 2007, 370, 890–907. [Google Scholar] [CrossRef]
- Smith, J.S.; Lindsay, L.; Hoots, B.; Keys, J.; Franceschi, S.; Winer, R.; Clifford, G.M. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: A meta-analysis update. Int. J. Cancer 2007, 121, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, G. Variation of HPV subtypes with focus on HPV-infection and cancer in the head and neck region. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les Recherches sur le Cancer 2017, 206, 113–122. [Google Scholar] [CrossRef]
- Bzhalava, D.; Eklund, C.; Dillner, J. International standardization and classification of human papillomavirus types. Virology 2015, 476, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Tsakogiannis, D.; Gartzonika, C.; Levidiotoustefanou, S.; Markoulatos, P. Molecular approaches for HPV genotyping and HPV-DNA physical status. Expert. Rev. Mol. Med. 2017, 19. [Google Scholar] [CrossRef] [PubMed]
- Bernard, H.U.; Burk, R.D.; Chen, Z.; van Doorslaer, K.; zur Hausen, H.; de Villiers, E.M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 2010, 401, 70–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rando, R.F. Nucleic acid hybridization as a diagnostic tool for the detection of human papillomaviruses. Adv. Exp. Med. Biol. 1989, 263, 89–109. [Google Scholar]
- Eide, M.L.; Debaque, H. HPV Detection Methods and Genotyping Techniques in Screening for Cervical Cancer. Ann. Pathol. 2012, 32, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Gradissimo, A.; Burk, R.D. Molecular tests potentially improving HPV screening and genotyping for cervical cancer prevention. Expert. Rev. Mol. Diagn. 2017, 17, 379–391. [Google Scholar] [CrossRef]
- Sargent, A.; Bailey, A.; Turner, A.; Almonte, M.; Gilham, C.; Baysson, H.; Peto, J.; Roberts, C.; Thomson, C.; Desai, M. Optimal threshold for a positive hybrid capture 2 test for detection of human papillomavirus: Data from the ARTISTIC trial. J. Clin. Microbiol. 2010, 48, 554–558. [Google Scholar] [CrossRef] [Green Version]
- Castle, P.E.; Schiffman, M.; Burk, R.D.; Wacholder, S.; Hildesheim, A.; Herrero, R.; Bratti, M.C.; Sherman, M.E.; Lorincz, A. Restricted cross-reactivity of hybrid capture 2 with nononcogenic human papillomavirus types. Cancer Epidemiol. Prev. Biomark. 2002, 11, 1394–1399. [Google Scholar]
- Gustavsson, I.; Juko-Pecirep, I.; Backlund, I.; Wilander, E.; Gyllensten, U. Comparison between the Hybrid Capture 2 and the hpVIR real-time PCR for detection of human papillomavirus in women with ASCUS or low grade dysplasia. J. Clin. Virol. Off. Pub. Pan Am. Soc. Clin. Virol. 2009, 45, 85–89. [Google Scholar] [CrossRef]
- Seme, K.; Fujs, K.; Kocjan, B.J.; Poljak, M. Resolving repeatedly borderline results of Hybrid Capture 2 HPV DNA Test using polymerase chain reaction and genotyping. J. Virol. Methods 2006, 134, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Gold, B. Origin and utility of the reverse dot-blot. Expert. Rev. Mol. Diagn. 2003, 3, 143–152. [Google Scholar] [CrossRef]
- Ramzan, M.; ul Ain, N.; Ilyas, S.; Umer, M.; Bano, S.; Sarwar, S.; Shahzad, N.; Shakoori, A.R. A cornucopia of screening and diagnostic techniques for human papillomavirus associated cervical carcinomas. J. Virol. Methods 2015, 222, 192–201. [Google Scholar] [CrossRef]
- Cao, B.; Wang, S.; Tian, Z.; Hu, P.; Feng, L.; Wang, L. DNA microarray characterization of pathogens associated with sexually transmitted diseases. PLoS ONE 2015, 10, e0133927. [Google Scholar] [CrossRef] [Green Version]
- Shen-Gunther, J.; Rebeles, J. Genotyping human papillomaviruses: Development and evaluation of a comprehensive DNA microarray. Gynecol. Oncol. 2013, 128, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.J.; Kim, C.J.; Woo, S.K.; Kim, T.S.; Jeong, D.J.; Kim, M.S.; Lee, S.; Cho, H.S.; An, S. Development and clinical evaluation of a highly sensitive DNA microarray for detection and genotyping of human papillomaviruses. J. Clin. Microbiol. 2004, 42, 3272–3280. [Google Scholar] [CrossRef] [Green Version]
- Marzancola, M.G.; Sedighi, A.; Li, P.C. DNA microarray-based diagnostics. Methods Mol. Biol. 2016, 1368, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Zhu, H.; Fohlerova, Z.; Pekarek, J.; Basova, E.; Neužil, P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron. 2020, 153, 112041. [Google Scholar] [CrossRef] [PubMed]
- Haeberle, S.; Zengerle, R. Microfluidic platforms for lab-on-a-chip applications. Lab Chip 2007, 7, 1094–1110. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, P.C. Microfluidic DNA microarray analysis: A review. Anal. Chim. Acta 2011, 687, 12–27. [Google Scholar] [CrossRef]
- Jung, W.; Han, J.; Choi, J.-W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Pandey, C.M.; Augustine, S.; Kumar, S.; Kumar, S.; Nara, S.; Srivastava, S.; Malhotra, B.D. Microfluidics based point-of-care diagnostics. Biotechnol. J. 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Sonker, M.; Sahore, V.; Woolley, A.T. Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: A critical review. Anal. Chim. Acta 2017, 986, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Suo, Y.; Zou, Z.; Sun, J.; Zhang, S.; Wang, B.; Xu, Y.; Darland, D.; Zhao, J.X.; Mu, Y. Integrated microfluidic systems with sample preparation and nucleic acid amplification. Lab Chip 2019, 19, 2769–2785. [Google Scholar] [CrossRef] [PubMed]
- Poritz, M.; Blaschke, A.; Byington, C.; Meyers, L.; Nilsson, K.; Jones, D.; Thatcher, S.; Robbins, T.; Lingenfelter, B.; Amiott, E.; et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: Development and application to respiratory tract infection. PLoS ONE 2011, 6, e26047. [Google Scholar] [CrossRef]
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012, 12, 2118–2134. [Google Scholar] [CrossRef]
- Yang, Q. Welding Method for Substrate and Membrane of Membrane Mobile Polymer Microfluidic Chip. U.S. Patent 9,427,735, 30 August 2016. [Google Scholar]
- Zhou, P.; Young, L.C. Laminated Microfluidic Structures and Method for Making. U.S. Patent 7,608,160, 27 October 2009. [Google Scholar]
- Young, L.; Zhou, P. Microfluidic Pump and Valve Structures and Fabrication Methods. U.S. Patent 7,832,429, 13 April 2010. [Google Scholar]
- Bosch, F.X.; Broker, T.R.; Forman, D.; Moscicki, A.-B.; Gillison, M.L.; Doorbar, J.; Stern, P.L.; Stanley, M.; Arbyn, M.; Poljak, M. Comprehensive control of human papillomavirus infections and related diseases. Vaccine 2013, 31, H1–H31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellsagué, X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol. Oncol. 2008, 110, S4–S7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wu, J.; He, X.; Zhou, P.; Shen, Z. A Sample-In-Answer-Out Microfluidic System for the Molecular Diagnostics of 24 HPV Genotypes Using Palm-Sized Cartridge. Micromachines 2021, 12, 263. https://doi.org/10.3390/mi12030263
Wang R, Wu J, He X, Zhou P, Shen Z. A Sample-In-Answer-Out Microfluidic System for the Molecular Diagnostics of 24 HPV Genotypes Using Palm-Sized Cartridge. Micromachines. 2021; 12(3):263. https://doi.org/10.3390/mi12030263
Chicago/Turabian StyleWang, Rui, Jing Wu, Xiaodong He, Peng Zhou, and Zuojun Shen. 2021. "A Sample-In-Answer-Out Microfluidic System for the Molecular Diagnostics of 24 HPV Genotypes Using Palm-Sized Cartridge" Micromachines 12, no. 3: 263. https://doi.org/10.3390/mi12030263
APA StyleWang, R., Wu, J., He, X., Zhou, P., & Shen, Z. (2021). A Sample-In-Answer-Out Microfluidic System for the Molecular Diagnostics of 24 HPV Genotypes Using Palm-Sized Cartridge. Micromachines, 12(3), 263. https://doi.org/10.3390/mi12030263