Heat Transfer Scale Effect Analysis and Parameter Measurement of an Electrothermal Microgripper
Abstract
:1. Introduction
2. Analysis of the Heat Transfer Mechanism and Modelling
2.1. Analysis of the Heat Transfer Mechanism
2.2. Heat Flow Model of a Micro-Unit
3. Experiment and Simulation of Heat Transfer Parameter Measurement
3.1. Experimental Setup
3.2. Parameter Measurement and Fitting
3.3. Influence of the Heat Transfer Parameters on the Temperature Fields
3.4. Simulation Modelling
4. Determination of the Influencing Factors of the Heat Transfer Parameters
4.1. Effect of Feature Size
4.2. Effect of Microgap
5. Experimental Verification
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Yu, Y.; Song, P.; Zhang, Y.; Tian, D.; Zhang, H.; Wei, H.; Cui, M.; Si, G.; Zhang, X. Automated manipulation of zebrafish embryos using an electrothermal microgripper. Microsyst. Technol. 2020, 26, 1823–1834. [Google Scholar] [CrossRef]
- Muhammad, M.U.; Saleem, M.M.; Khan, U.S.; Hamza, A. Design closed-form modeling and analysis of SU-8 based electrothermal microgripper for biomedical applications. Microsyst. Technol. 2019, 25, 1171–1184. [Google Scholar]
- Al-Zandi, M.H.M.; Wang, C.; Voicu, R.; Muller, R. Measurement and characterisation of displacement and temperature of polymer based electrothermal microgrippers. Microsyst. Technol. 2018, 24, 379–387. [Google Scholar] [CrossRef]
- Anastasiadi, G.; Leonard, M.; Paterson, L.; Macpherson, W.N. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation. Opt. Express 2018, 26, 3557–3567. [Google Scholar] [CrossRef] [PubMed]
- Cauchi, M.; Grech, I.; Mallia, B.; Mollicone, P.; Sammut, N. The effects of cold arm width and metal deposition on the performance of a U-beam electrothermal MEMS microgripper for biomedical applications. Micromachines 2019, 10, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thangavel, A.; Rengaswamy, R.; Sukumar, P.K.; Sekar, R. Modelling of Chevron electrothermal actuator and its performance analysis. Microsyst. Technol. 2018, 24, 1767–1774. [Google Scholar] [CrossRef]
- Cauch, M.; Grech, I.; Mallia, B.; Mollicone, P.; Sammut, N. The effects of structure thickness, air gap thickness and silicon type on the performance of a horizontal electrothermal MEMS microgripper. Actuators 2018, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Somà, A.; Iamoni, S.; Voicu, R.; Müller, R.; Al-Zandi, M.H.; Wang, C. Design and experimental testing of an electro-thermal microgripper for cell manipulation. Microsyst. Technol. 2018, 24, 1053–1060. [Google Scholar] [CrossRef]
- Karbasi, S.M.; Shamshirsaz, M.; Naraghi, M.; Maroufi, M. Optimal design analysis of electrothermally driven microactuators. Microsyst. Technol. 2010, 16, 1065–1071. [Google Scholar] [CrossRef]
- Shivhare, P.; Uma, G.; Umapathy, M. Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance. Microsyst. Technol. 2016, 22, 2623–2631. [Google Scholar] [CrossRef]
- Tuckerman, D.B.; Pease, R.E.W. High-performance heat sinking for VLSI. IEEE Electron. Device Lett. 1981, 5, 126–129. [Google Scholar] [CrossRef]
- Peris, J.; Reynaerts, D.; Van, B.H. Design of miniature parallel manipulator for integration in a self-propelling endoscope. Sens. Actuators A 2000, 85, 409–417. [Google Scholar] [CrossRef]
- Nath, P.; Chopra, K.L. Thermal conductivity of copper films. Thin Solid Film. 1974, 20, 53–63. [Google Scholar] [CrossRef]
- Volland, B.E.; Heerlein, H.; Rangelow, I.W. Electrostatically driven microgripper. Microelectron. Eng. 2002, 61–62, 1015–1023. [Google Scholar] [CrossRef]
- Verotti, M.; Dochshanov, A.; Belfiore, N.P. A comprehensive survey on microgrippers design. Mech. Struct. 2017, 139, 60. [Google Scholar]
- Chen, G.J. Particularities of heat conduction in nanostructures. Nanoparticle Res. 2000, 2, 199–204. [Google Scholar] [CrossRef]
- Tien, C.L.; Chen, G. Challenges in microscale conductive and radiative heat transfer. ASME J. Heat Transf. 1994, 116, 799–807. [Google Scholar] [CrossRef]
- Solano, B.; Merrell, J.; Gallant, A.; Wood, D. Modelling and experimental verification of heat dissipation mechanisms in an SU-8 electrothermal microgripper. Microelectron. Eng. 2014, 124, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Chu, J.; Wang, L.; Guan, L. Heat effect analysis and numerical simulation of an electrothermal microgripper. China Mech. Eng. 2005, 16, 1269–1272. (In Chinese) [Google Scholar]
Heat Transfer Parameter | Numerical Value |
---|---|
Coefficient of heat conductivity k (W/(m·°C)) | 148 |
Blackness ε | 0.6 |
Convective heat transfer coefficient α (W/(m2·°C)) | 5–25 |
Stefan–Boltzmann σb (W/(m2·K4)) | 5.67 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Wu, H.; Xue, L.; Shen, H.; Huang, H.; Chen, L. Heat Transfer Scale Effect Analysis and Parameter Measurement of an Electrothermal Microgripper. Micromachines 2021, 12, 309. https://doi.org/10.3390/mi12030309
Lin L, Wu H, Xue L, Shen H, Huang H, Chen L. Heat Transfer Scale Effect Analysis and Parameter Measurement of an Electrothermal Microgripper. Micromachines. 2021; 12(3):309. https://doi.org/10.3390/mi12030309
Chicago/Turabian StyleLin, Lin, Hao Wu, Liwei Xue, Hao Shen, Haibo Huang, and Liguo Chen. 2021. "Heat Transfer Scale Effect Analysis and Parameter Measurement of an Electrothermal Microgripper" Micromachines 12, no. 3: 309. https://doi.org/10.3390/mi12030309
APA StyleLin, L., Wu, H., Xue, L., Shen, H., Huang, H., & Chen, L. (2021). Heat Transfer Scale Effect Analysis and Parameter Measurement of an Electrothermal Microgripper. Micromachines, 12(3), 309. https://doi.org/10.3390/mi12030309