A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of the Cassette
2.2. Design of the Supporting Device
2.3. Reagents and Materials
2.4. Printing and Immobilization of the Antibodies
2.5. Optimization of the Antibody Concentrations
2.6. Immunoassays
2.7. Data Acquisition and Analysis
3. Results
3.1. Workflow of the Immunoassay Cassette
3.2. Optimization of the Concentrations of Antigen and Antibody
3.3. Determination of the Specificity
3.4. Calibration Curves of the Three Biomarkers
3.5. Detection of Clinical Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Allinson, J.L. Clinical biomarker validation. Bioanalysis 2018, 10, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers Definitions Working Group; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Wulfkuhle, J.D.; Liotta, L.A.; Petricoin, E.F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 2003, 3, 267–275. [Google Scholar] [CrossRef]
- Kingsmore, S.F. Multiplexed protein measurement: Technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov. 2006, 5, 310–320. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Weinstein, J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 2005, 5, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Qu, X. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev. 2015, 44, 2963–2997. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Wudayagiri, R.; Valluru, L. Cervical cancer: Biomarkers for diagnosis and treatment. Clin. Chim. Acta 2015, 445, 7–11. [Google Scholar] [CrossRef]
- Giljohann, D.A.; Mirkin, C.A. Drivers of biodiagnostic development. Nature 2009, 462, 461–464. [Google Scholar] [CrossRef]
- Nimse, S.B.; Sonawane, M.D.; Song, K.S.; Kim, T. Biomarker detection technologies and future directions. Analyst 2016, 141, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Stolz, A.; Jooss, K.; Hocker, O.; Romer, J.; Schlecht, J.; Neususs, C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2019, 40, 79–112. [Google Scholar] [CrossRef]
- Pei, X.; Zhang, B.; Tang, J.; Liu, B.; Lai, W.; Tang, D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal. Chim. Acta 2013, 758, 1–18. [Google Scholar] [CrossRef]
- Zong, C.; Wu, J.; Wang, C.; Ju, H.; Yan, F. Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening. Anal. Chem. 2012, 84, 2410–2415. [Google Scholar] [CrossRef]
- Gill, R.; Zayats, M.; Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. Engl. 2008, 47, 7602–7625. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Kwon, D.; Yim, C.; Jeon, S. Highly sensitive diagnostic assay for the detection of protein biomarkers using microresonators and multifunctional nanoparticles. ACS Nano 2012, 6, 4375–4381. [Google Scholar] [CrossRef] [PubMed]
- Shikha, S.; Zheng, X.; Zhang, Y. Upconversion nanoparticles-encoded hydrogel microbeads-based multiplexed protein detection. Nanomicro Lett. 2018, 10, 31. [Google Scholar] [CrossRef]
- Gupta, S.; Manubhai, K.P.; Kulkarni, V.; Srivastava, S. An overview of innovations and industrial solutions in Protein Microarray Technology. Proteomics 2016, 16, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Whittaker, K.; Zhang, H.; Wu, J.; Zhu, S.W.; Huang, R.P. Integration of antibody array technology into drug discovery and development. Assay Drug Dev. Technol. 2018, 16, 74–95. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, H. Protein array-based approaches forbiomarker discovery in cancer. Genom. Proteom. Bioinform. 2017, 15, 73–81. [Google Scholar] [CrossRef]
- Spisák, S.; Guttman, A. Biomedical applications of protein microarrays. Curr. Med. Chem. 2009, 16, 2806–2815. [Google Scholar] [CrossRef]
- Kwon, M.H.; Kong, D.H.; Jung, S.H.; Suh, I.B.; Kim, Y.M.; Ha, K.S. Rapid determination of blood coagulation factor XIII activity using protein arrays for serodiagnosis of human plasma. Anal. Chem. 2011, 83, 2317–2323. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.; Lin, D.; Li, K.; Yin, C.; Liu, X.; Jin, B.; Sun, L.; Liu, J.; Zhang, A.; et al. Protein microarray with horseradish peroxidase chemiluminescence for quantification of serum alpha-fetoprotein. J. Int. Med. Res. 2015, 43, 639–647. [Google Scholar] [CrossRef]
- Gao, Y.; Huo, W.; Zhang, L.; Lian, J.; Tao, W.; Song, C.; Tang, J.; Shi, S.; Gao, Y. Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor. Biosens. Bioelectron. 2019, 123, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Ling, C.; Ma, Q.; Gao, Q.; Zhang, C. Sensitive electrochemical immunosensor array for the simultaneous detection of multiple tumor markers. Analyst 2012, 137, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Sage, A.T.; Besant, J.D.; Lam, B.; Sargent, E.H.; Kelley, S.O. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes. Acc. Chem. Res. 2014, 47, 2417–2425. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2020, 206, 120251. [Google Scholar] [CrossRef]
- Feng, J.; Li, Y.; Li, M.; Li, F.; Han, J.; Dong, Y.; Chen, Z.; Wang, P.; Liu, H.; Wei, Q. A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosens. Bioelectron. 2017, 91, 441–448. [Google Scholar] [CrossRef]
- He, L.; Pagneux, Q.; Larroulet, I.; Serrano, A.Y.; Pesquera, A.; Zurutuza, A.; Mandler, D.; Boukherroub, R.; Szunerits, S. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosens. Bioelectron. 2017, 89 Pt 1, 606–611. [Google Scholar] [CrossRef]
- Kartanas, T.; Ostanin, V.; Challa, P.K.; Daly, R.; Charmet, J.; Knowles, T. Enhanced Quality Factor Label-free Biosensing with Micro-Cantilevers Integrated into Microfluidic Systems. Anal. Chem. 2017, 89, 11929–11936. [Google Scholar] [CrossRef]
- Gao, A.; Lu, N.; Dai, P.; Li, T.; Pei, H.; Gao, X.; Gong, Y.; Wang, Y.; Fan, C. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 2011, 11, 3974–3978. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, S.; Koo, K.; Kim, K. Nanowire-Based Sensors for Biological and Medical Applications. IEEE Trans. Nanobiosci. 2016, 15, 186–199. [Google Scholar] [CrossRef]
- Ouyang, W.; Han, J. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration. Proc. Natl. Acad. Sci. USA 2019, 116, 16240–16249. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Han, J.; Wang, W. Enabling electrical biomolecular detection in high ionic concentrations and enhancement of the detection limit thereof by coupling a nanofluidic crystal with reconfigurable ion concentration polarization. Lab Chip 2017, 17, 3772–3784. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, H.; Lv, J.; Zhang, B.; Wei, W.; Guo, J. Pt NPs and DNAzyme functionalized polymer nanospheres as triple signal amplification strategy for highly sensitive electrochemical immunosensor of tumour marker. Biosens. Bioelectron. 2016, 86, 156–163. [Google Scholar] [CrossRef]
- Lai, G.; Cheng, H.; Xin, D.; Zhang, H.; Yu, A. Amplified inhibition of the electrochemical signal of ferrocene by enzyme-functionalized graphene oxide nanoprobe for ultrasensitive immunoassay. Anal. Chim. Acta 2016, 902, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Meng, X.; Zhu, Y.; Shen, M.; Lu, Y.; Cheng, J.; Xu, Y. Rapid detection of four mycotoxins in corn using a microfluidics and microarray-based immunoassay system. Talanta 2018, 186, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Cordero, J.L.; Maerkl, S.J. A 1024-sample serum analyzer chip for cancer diagnostics. Lab Chip 2014, 14, 2642–2650. [Google Scholar] [CrossRef]
- Kloth, K.; Niessner, R.; Seidel, M. Development of an open stand-alone platform for regenerable automated microarrays. Biosens. Bioelectron. 2009, 24, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Knecht, B.G.; Strasser, A.; Dietrich, R.; Märtlbauer, E.; Niessner, R.; Weller, M.G. Automated microarray system for the simultaneous detection of antibiotics in milk. Anal. Chem. 2004, 76, 646–654. [Google Scholar] [CrossRef]
- Chen, A.; Wang, G.; Cao, Q.; Wang, Y.; Zhang, Z.; Sun, Y.; Wang, H.; Xu, C.; Zhou, Q.; Han, P.; et al. Development of an antibody hapten-chip system for detecting the residues of multiple antibiotic drugs. J. Forensic Sci. 2009, 54, 953–960. [Google Scholar] [CrossRef]
- Du, H.; Wu, M.; Yang, W.; Yuan, G.; Sun, Y.; Lu, Y.; Zhao, S.; Du, Q.; Wang, J.; Yang, S.; et al. Development of miniaturized competitive immunoassays on a protein chip as a screening tool for drugs. Clin. Chem. 2005, 51, 368–375. [Google Scholar] [CrossRef]
- Du, H.; Yang, W.; Xing, W.; Su, Y.; Cheng, J. Parallel detection and quantification using nine immunoassays in a protein microarray for drug from serum samples. Biomed. Microdevices 2005, 7, 143–146. [Google Scholar] [CrossRef]
- Baratchi, S.; Khoshmanesh, K.; Sacristan, C.; Depoil, D.; Wlodkowic, D.; McIntyre, P.; Mitchell, A. Immunology on chip: Promises and opportunities. Biotechnol. Adv. 2014, 32, 333–346. [Google Scholar] [CrossRef]
- Mou, L.; Jiang, X. Materials for microfluidic immunoassays: A review. Adv. Healthc. Mater. 2017, 6, 1601403. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Kricka, L.J. Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation. Clin. Chem. 2018, 64, 1439–1452. [Google Scholar] [CrossRef]
- Boyd-Moss, M.; Baratchi, S.; Di Venere, M.; Khoshmanesh, K. Self-contained microfluidic systems: A review. Lab Chip 2016, 16, 3177–3192. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Yin, C.; Wu, J.; Li, W.; Zheng, L.; Lin, F.; Han, X.; Fu, Y.; Zhang, D.; Zhuang, S. A flux-adaptable pump-free microfluidics-based self-contained platform for multiplex cancer biomarker detection. Lab Chip 2021, 21, 143–153. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Mou, L.; Liu, Y.; Deng, J.; Qian, W.; Sun, J.; Cha, R.; Jiang, X. An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. Lab Chip 2017, 17, 2225–2234. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Tai, T.Y.; Li, K.H.; Gopinathan, P.; Chung, Y.D.; Sarangadharan, I.; Ma, H.P.; Huang, P.C.; Shiesh, S.C.; Wang, Y.L.; et al. An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples. Biosens. Bioelectron. 2019, 129, 155–163. [Google Scholar] [CrossRef]
- Meany, D.L.; Hackler, L.; Zhang, H.; Chan, D.W. Tyramide signal amplification for antibody-overlay lectin microarray: A strategy to improve the sensitivity of targeted glycan profiling. J. Proteome Res. 2011, 10, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Garcia-D’Angeli, A.; Brennan, J.P.; Huo, Q. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst 2014, 139, 439–445. [Google Scholar] [CrossRef] [PubMed]
Target | Standard Curve | Adj. R2 | LOD |
---|---|---|---|
AFP | yAFP = 64,114.05 − 63,980.01/[1 + (x/7.10)2.4908] | 0.9940 | 0.303 ng/mL |
CEA | yCEA = 63,554.89 − 63,508.52/[1 + (x/21.50)2.5841] | 0.9935 | 1.870 ng/mL |
CA125 | yCA125 = 62,549.65 − 62,485.99/[1 + (x/108.58)3.6293] | 0.9979 | 18.617 U/mL |
No. | Measured in Hospital | Measured in Cassette System | |||||||
---|---|---|---|---|---|---|---|---|---|
AFP (ng/mL) | CEA (ng/mL) | CA125 (U/mL) | AFP (ng/mL) | RD 1 (%) | CEA (ng/mL) | RD (%) | CA125 (U/mL) | RD (%) | |
1 | 2.75 | 2.39 | 7.51 | 2.66 | 3.4 | 2.62 | 9.5 | 7.82 | 4.1 |
2 | 3.57 | 2.43 | 27.9 | 3.39 | 5.0 | 2.58 | 6.3 | 30.89 | 10.7 |
3 | 1.63 | 2.52 | 8.65 | 1.64 | 0.5 | 2.24 | 11.0 | 10.02 | 15.8 |
4 | 6.08 | 1.97 | 19.14 | 6.49 | 6.7 | 2.08 | 5.4 | 15.52 | 18.9 |
5 | 8.59 | 2.14 | 12.2 | 7.52 | 12.5 | 2.30 | 7.5 | 11.91 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Shen, M.; Xu, Y. A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers. Micromachines 2021, 12, 347. https://doi.org/10.3390/mi12040347
Li N, Shen M, Xu Y. A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers. Micromachines. 2021; 12(4):347. https://doi.org/10.3390/mi12040347
Chicago/Turabian StyleLi, Nan, Minjie Shen, and Youchun Xu. 2021. "A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers" Micromachines 12, no. 4: 347. https://doi.org/10.3390/mi12040347
APA StyleLi, N., Shen, M., & Xu, Y. (2021). A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers. Micromachines, 12(4), 347. https://doi.org/10.3390/mi12040347