Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Epitaxial Characteristics
3.2. Device Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schubert, E.F.; Kim, J.K. Solid-State Light Sources Getting Smart. Science 2005, 308, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Ponce, F.A.; Bour, D.P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 1997, 386, 351–359. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, H.Y.; Chiu, H.C.; Chen, Y.; Li, D.; Huang, C.R.; Kao, H.L.; Kuo, H.C.; Chen, S.W.H. Analysis of the back-barrier effect in AlGaN/GaN high electron mobility transistor on free-standing GaN substrates. J. Alloys Compd. 2020, 814, 152293. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Peng, D.; Yang, Q.; Zhang, D.; Luo, W.; Pan, C. Growth of thin AlN nucleation layer and its impact on GaN-on-SiC heteroepitaxy. J. Alloys Compd. 2020, 838, 155557. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P.; Zou, X.; Jiang, J.; Yuen, S.H.; Tang, C.W.; Lau, K.M. Active Matrix Monolithic LED Micro-Display Using GaN-on-Si Epilayers. IEEE Photonics Technol. Lett. 2019, 31, 865–868. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, K.; Feng, M.; Li, Z.; Zhou, Y.; Sun, Q.; Liu, J.; Zhang, L.; Li, D.; Sun, X.; et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light Sci. Appl. 2018, 7, 13. [Google Scholar] [CrossRef]
- Lee, K.H.; Bao, S.; Zhang, L.; Kohen, D.; Fitzgerald, E.; Tan, C.S. Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process. Appl. Phys. Express 2016, 9, 086501. [Google Scholar] [CrossRef]
- Khoury, M.; Tottereau, Q.; Feuillet, G.; Vennegues, P.; Zuniga-Perez, J. Evolution and prevention of meltback etching: Case study of semipolar GaN growth on patterned silicon substrates. J. Appl. Phys. 2017, 122, 105108. [Google Scholar] [CrossRef]
- Tran, C.A.; Osinski, A.; Karlicek, R.F.J. Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 1999, 75, 1494–1496. [Google Scholar] [CrossRef]
- Dadgar, A.; Blasing, J.; Diez, A.; Alam, A.; Heuken, M.; Krost, A. Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 µm in Thickness. Jpn. J. Appl. Phys. 2000, 39, L1183–L1185. [Google Scholar] [CrossRef]
- Kim, B.; Lee, K.; Jang, S.; Jhin, J.; Lee, S.; Baek, J.; Yu, Y.; Lee, J.; Byun, D. Epitaxial Lateral Overgrowth of GaN on Si (111) Substrates Using High-Dose, N+ Ion Implantation. Chem. Vap. Depos. 2010, 16, 80–84. [Google Scholar] [CrossRef]
- Lee, K.J.; Chun, J.; Kim, S.J.; Ha, C.S.; Park, J.W.; Lee, S.J.; Song, J.C.; Baek, J.H.; Park, S.J. Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer. Opt. Express 2016, 24, 4391–4398. [Google Scholar] [CrossRef]
- Able, A.; Wegscheider, W.; Engl, K.; Zweck, J. Growth of crack-free GaN on Si (1 1 1) with graded AlGaN buffer layers. J. Cryst. Growth 2005, 276, 415–418. [Google Scholar] [CrossRef]
- Ni, Y.; He, Z.; Yang, F.; Zhou, D.; Yao, Y.; Zhou, G.; Shen, Z.; Zhong, J.; Zhen, Y.; We, Z.; et al. Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-Si (111) system. Jpn. J. Appl. Phys. 2015, 54, 015505. [Google Scholar] [CrossRef]
- Reiher, A.; Blasing, J.; Dadgar, A.; Diez, A.; Krost, A. Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers. J. Cryst. Growth. 2003, 248, 563–567. [Google Scholar] [CrossRef]
- Lin, P.; Tien, C.; Wang, T.; Chen, C.; Ou, S.; Chung, B.; Wuu, D. On the role of AlN insertion layer in stress control of GaN on 150-mm Si (111) substrate. Crystals 2017, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Yang, M.; Wang, W.; Lin, Z.; Li, G. A low-temperature AlN interlayer to improve the quality of GaN epitaxial films grown on Si substrates. CrystEngComm 2016, 18, 8926. [Google Scholar] [CrossRef]
- Hirayama, H.; Yatabe, T.; Noguchi, N.; Ohashi, T.; Kamata, N. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 2007, 91, 071901. [Google Scholar] [CrossRef]
- Kaganer, V.M.; Brandt, O.; Trampert, A.; Ploog, K.H. X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films. Phys. Rev. B. 2005, 72, 045423. [Google Scholar] [CrossRef] [Green Version]
- Vickers, M.E.; Kappers, M.J.; Datta, R.; McAleese, C.; Smeeton, T.M.; Rayment, F.D.; Humphreys, C.J. In-plane imperfections in GaN studied by X-ray diffraction. J. Phys. D Appl. Phys. 2005, 38, A99–A104. [Google Scholar] [CrossRef]
- Jain, R.; Sun, W.; Yang, J.; Shatalov, M.; Hu, X.; Sattu, A.; Lunev, A.; Deng, J.; Shturm, I.; Bilenko, Y.; et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2008, 93, 051113. [Google Scholar] [CrossRef]
- Rahman, M.N.A.; Talik, N.A.; Abdul, M.I.M.; Sulaiman, A.F.; Allif, K.; Zahir, N.M.; Shuhaimi, A. Ammonia flux tailoring on the quality of AlN epilayers grown by pulsed atomic-layer epitaxy techniques on (0001)-oriented sapphire substrates via MOCVD. CrystEngComm 2019, 21, 2009–2017. [Google Scholar] [CrossRef]
- Kum, D.; Byun, D. The Effect of Substrate Surface Roughness on GaN Growth Using MOCVD Process. J. Electron. Mater. 1997, 26, 1098–1102. [Google Scholar] [CrossRef]
- Guillaume, G.; Gael, G.; Marc, P.; Eric, F.; Daniel, A.; Yvon, C.; Favrice, S. A detailed study of AlN and GaN grown on Silicon-on-porous Silicon substrate. Phys. Status Solidi A 2017, 214, 1600450. [Google Scholar]
- Wang, K.; Yu, T.; Wei, Y.; Li, M.; Zhang, G.; Fan, S. Coordinated stress management and dislocation control in GaN growth on Si (111) substrates by using a carbon nanotube mask. Nanoscale 2019, 11, 4489–4495. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Li, J.; Chen, Y.; Li, C.; Zhan, J.; Yu, T.; Kang, X.; Jiao, F.; Li, S.; et al. A study of GaN nucleation and coalescence in the initial growth stages on nanoscale patterned sapphire substrates via MOCVD. CrystEngComm 2018, 20, 6811–6820. [Google Scholar] [CrossRef]
- Kisielowski, C.; Kruger, J.; Ruvimov, S.; Suski, T.; Ager, J.W.; Jones, E.; Liliental-Weber, Z.; Rubin, M.; Weber, E.R.; Bremser, M.D.; et al. Strain-related phenomena in GaN thin films. Phys. Rev. B 1996, 54, 17745. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Biswas, D. Impact of varying buffer thickness generated strain and threading dislocations on the formation of plasma assisted MBE grown ultra-thin AlGaN/GaN heterostructure on silicon. AIP Adv. 2015, 5, 057149. [Google Scholar] [CrossRef] [Green Version]
- Tanoto, H.; Yoon, S.F.; Loke, W.K.; Chen, K.P.; Fitzgerald, E.A.; Dohrman, C.; Narayanan, B. Heteroepitaxial growth of GaAs on (100) Ge/ Si using migration enhanced epitaxy. J. Appl. Phys. 2008, 103, 104901. [Google Scholar] [CrossRef]
- Tan, B.; Hu, J.; Zhang, J.; Zhang, Y.; Long, H.; Chen, J.; Du, S.; Dai, J.; Chen, C.; Xu, J.; et al. AlN gradient interlayer design for the growth of high-quality AlN epitaxial film on sputtered AlN/sapphire substrate. CrystEngComm 2018, 20, 6557–6564. [Google Scholar] [CrossRef]
- Akyol, F.; Nath, D.; Krishnamoorthy, S.; Park, P.; Rajan, S. Suppression of electron overglow and efficiency droop in N-polar GaN green light emitting diodes. Appl. Phys. Lett. 2012, 100, 111118. [Google Scholar] [CrossRef] [Green Version]
- Piprek, J.; Romer, F.; Witzigmann, B. On the uncertainly of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett. 2015, 106, 101101. [Google Scholar] [CrossRef] [Green Version]
Sample | t1/t2 | XRD FWHM (arcsec) | Dislocation Density (×109 cm−2) | ||||
---|---|---|---|---|---|---|---|
GaN (001) | GaN (102) | AlN (001) | Ds (GaN) | De (GaN) | Ds (AlN) | ||
Ref. | t1 | 1270 | 1580 | 2970 | 13.8 | 56 | 81.7 |
Sample A | 3/2 | 714 | 1079 | 2316 | 4.36 | 26.3 | 49.7 |
Sample B | 5/2 | 563 | 760 | 1255 | 2.71 | 13 | 14.6 |
Sample C | 7/2 | 389 | 589 | 1225 | 1.29 | 7.85 | 13.9 |
Sample D | 9/2 | 448 | 581 | 1237 | 1.71 | 7.63 | 14.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Oh, S.; Lee, K.-J.; Kim, S.; Kim, K.-K. Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption. Micromachines 2021, 12, 399. https://doi.org/10.3390/mi12040399
Kim S-J, Oh S, Lee K-J, Kim S, Kim K-K. Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption. Micromachines. 2021; 12(4):399. https://doi.org/10.3390/mi12040399
Chicago/Turabian StyleKim, Sang-Jo, Semi Oh, Kwang-Jae Lee, Sohyeon Kim, and Kyoung-Kook Kim. 2021. "Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption" Micromachines 12, no. 4: 399. https://doi.org/10.3390/mi12040399
APA StyleKim, S. -J., Oh, S., Lee, K. -J., Kim, S., & Kim, K. -K. (2021). Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption. Micromachines, 12(4), 399. https://doi.org/10.3390/mi12040399