Thickness Optimization of Thin-Film Tandem Organic Solar Cell
Abstract
:1. Introduction
2. Device Modeling and Working
3. Results and Discussion
3.1. Investigation on Top Subcell
3.2. Investigation on Middle Subcell
3.3. Investigation on Bottom Subcell
3.4. High-Temperature Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Farooq, W.; Khan, A.D.; Khan, A.D.; Noman, M. Enhancing the power conversion efficiency of organic solar cells. Optik 2020, 208, 164093. [Google Scholar] [CrossRef]
- Li, W.; Furlan, A.; Hendriks, K.H.; Wienk, M.M.; Janssen, R.A. Efficient tandem and triple-junction polymer solar cells. J. Am. Chem. Soc. 2013, 135, 5529–5532. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photonics 2012, 6, 180–185. [Google Scholar] [CrossRef]
- Guter, W.; Schöne, J.; Philipps, S.P.; Steiner, M.; Siefer, G.; Wekkeli, A.; Welser, E.; Oliva, E.; Bett, A.W.; Dimroth, F. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 2009, 94, 223504. [Google Scholar] [CrossRef]
- Mathews, I.; O’Mahony, D.; Corbett, B.; Morrison, A.P. Theoretical performance of multi-junction solar cells combining III-V and Si materials. Opt. Express 2012, 20, A754–A764. [Google Scholar] [CrossRef] [PubMed]
- Wiemer, M.; Sabnis, V.; Yuen, H. 43.5% efficient lattice matched solar cells. In High and Low Concentrator Systems for Solar Electric Applications VI; SPIE: Bellingham, WA, USA, 19 September 2011. [Google Scholar] [CrossRef]
- Zhou, E.; Cong, J.; Hashimoto, K.; Tajima, K. Introduction of a conjugated side chain as an effective approach to improving donor–acceptor photovoltaic polymers. Energy Environ. Sci. 2012, 5, 9756–9759. [Google Scholar] [CrossRef]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design rules for donors in bulk-heterojunction solar cells—Towards 10% energy-conversion efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Peumans, P.; Yakimov, A.; Forrest, S.R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 2003, 93, 3693–3723. [Google Scholar] [CrossRef]
- Hadipour, A.; de Boer, B.; Blom, P.W. Organic tandem and multi-junction solar cells. Adv. Funct. Mater. 2008, 18, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Gao, S.; Li, W.; Vlasko-Vlasov, V.; Welp, U.; Kwok, W.-K.; Xu, T. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: Synthesis and optical and electrical properties. Acs Appl. Mater. Interfaces 2011, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, L.; Chen, Y. Universal and versatile MoO3-based hole transport layers for efficient and stable polymer solar cells. J. Phys. Chem. C 2014, 118, 9930–9938. [Google Scholar] [CrossRef]
- Greiner, M.T.; Helander, M.G.; Tang, W.-M.; Wang, Z.-B.; Qiu, J.; Lu, Z.-H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2012, 11, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Ananthanarayanan, K.; Luther, J.; Balaya, P. Origin of hole selectivity and the role of defects in low-temperature solution-processed molybdenum oxide interfacial layer for organic solar cells. J. Phys. Chem. C 2012, 116, 16346–16351. [Google Scholar] [CrossRef]
- Arnab, S.M.; Kabir, M. An analytical model for analyzing the current-voltage characteristics of bulk heterojunction organic solar cells. J. Appl. Phys. 2014, 115, 034504. [Google Scholar] [CrossRef]
- Singh, P.; Ravindra, N.M. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Stelling, C.; Singh, C.R.; Karg, M.; König, T.A.; Thelakkat, M.; Retsch, M. Plasmonic nanomeshes: Their ambivalent role as transparent electrodes in organic solar cells. Sci. Rep. 2017, 7, 42530. [Google Scholar] [CrossRef] [PubMed]
- Gilot, J.; Wienk, M.M.; Janssen, R.A. Optimizing polymer tandem solar cells. Adv. Mater. 2010, 22, E67–E71. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Baran, D.; Forberich, K.; Turbiez, M.; Ameri, T.; Krebs, F.C.; Brabec, C.J. An efficient solution-processed intermediate layer for facilitating fabrication of organic multi-junction solar cells. Adv. Energy Mater. 2013, 3, 1597–1605. [Google Scholar] [CrossRef]
- Khan, A.D.; Khan, A.D. Optimization of highly efficient GaAs–silicon hybrid solar cell. Appl. Phys. A 2018, 124, 851. [Google Scholar] [CrossRef]
Electrodes Combination | Jsc (mA/cm2) | FF% | η% |
---|---|---|---|
FTO/Ag | 16.87 | 84.97 | 14.33 |
FTO/Al | 15.64 | 81.02 | 14.01 |
FTO/Au | 15.55 | 79.23 | 13.88 |
ITO/Al | 14.84 | 78.90 | 13.31 |
ITO/Ag | 14.61 | 77.02 | 13.03 |
ITO/Au | 14.57 | 76.95 | 12.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangash, K.A.; Kazmi, S.A.A.; Farooq, W.; Ayub, S.; Musarat, M.A.; Alaloul, W.S.; Javed, M.F.; Mosavi, A. Thickness Optimization of Thin-Film Tandem Organic Solar Cell. Micromachines 2021, 12, 518. https://doi.org/10.3390/mi12050518
Bangash KA, Kazmi SAA, Farooq W, Ayub S, Musarat MA, Alaloul WS, Javed MF, Mosavi A. Thickness Optimization of Thin-Film Tandem Organic Solar Cell. Micromachines. 2021; 12(5):518. https://doi.org/10.3390/mi12050518
Chicago/Turabian StyleBangash, Kamran Ali, Syed Asfandyar Ali Kazmi, Waqas Farooq, Saba Ayub, Muhammad Ali Musarat, Wesam Salah Alaloul, Muhammad Faisal Javed, and Amir Mosavi. 2021. "Thickness Optimization of Thin-Film Tandem Organic Solar Cell" Micromachines 12, no. 5: 518. https://doi.org/10.3390/mi12050518
APA StyleBangash, K. A., Kazmi, S. A. A., Farooq, W., Ayub, S., Musarat, M. A., Alaloul, W. S., Javed, M. F., & Mosavi, A. (2021). Thickness Optimization of Thin-Film Tandem Organic Solar Cell. Micromachines, 12(5), 518. https://doi.org/10.3390/mi12050518