Three-Dimensional Arterial Pulse Signal Acquisition in Time Domain Using Flexible Pressure-Sensor Dense Arrays
Abstract
:1. Introduction
2. Design and Fabrication of Arterial Pulse Acquisition System
2.1. Pulse Sensors Array
2.2. Pulse Acquisition System
3. Results of Three-Dimensional Arterial Pulse Acquisition Studies
3.1. Subjects
3.2. Sensor Positioning
3.3. Time Domain Waveform Parameters Extraction
3.4. 3D Pulse Envelope Image
3.5. Pulse Width and Dynamic Pulse Width
3.6. PWV Acquisition
3.7. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Z.; Cui, J.; Hu, X.; Tu, L.; Liu, H.; Jiao, W.; Zeng, L.; Jing, C.; Qiao, L.; Ma, X.; et al. A Study of Machine-Learning Classifiers for Hypertension Based on Radial Pulse Wave. BioMed Res. Int. 2018, 2018, 2964816. [Google Scholar] [CrossRef] [Green Version]
- Miao, F.; Wang, X.; Yin, L.; Li, Y. A wearable sensor for arterial stiffness monitoring based on machine learning algorithms. IEEE Sens. J. 2019, 19, 1426–1434. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, L.; Pan, Z. Multiple linear regression model for vascular aging assessment based on radial artery pulse wave. Eur. J. Integr. Med. 2019, 28, 92–97. [Google Scholar] [CrossRef]
- Kaisti, M.; Panula, T.; Leppänen, J.; Punkkinen, R.; Tadi, M.J.; Vasankari, T.; Jaakkola, S.; Kiviniemi, T.; Airaksinen, J.; Kostiainen, P.; et al. Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation. NPJ Digit. Med. 2019, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Tsai, Y.; Chen, C.; Yu, H.; Yang, M.; Lee, W.; Lin, C. Cardiac output derived from arterial pressure waveform analysis in patients undergoing liver transplantation: Validity of a third-generation device. Transplant. Proc. 2012, 44, 424–428. [Google Scholar] [CrossRef]
- Jatoi, N.; Mahmud, A.; Bennett, K.; Feely, J. Assessment of arterial stiffness in hypertension: Comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J. Hypertens. 2009, 27, 2186–2191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, J.; Ma, K.; Chen, H.; Zhang, J. A wristband device for detecting human pulse and motion based on the Internet of Things. Meas. J. Int. Meas. Confed. 2020, 163, 108036. [Google Scholar] [CrossRef]
- Tsai, Y.; Huang, Y.; Lin, S.; Lee, S.; Cheng, Y.; Chang, Y.; Su, Y. Different harmonic characteristics were found at each location on TCM radial pulse diagnosis by spectrum analysis. Evid. Based Complementary Altern. Med. 2018, 2018, 9018271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaraj, N.; Shelley, K.; Silverman, D.; Stachenfeld, N.; Galante, N.; Florian, J.; Mendelson, Y.; Chon, K. A novel approach using time-frequency analysis of pulse-oximeter data to detect progressive hypovolemia in spontaneously breathing healthy subjects(optical). IEEE Trans. Biomed. Eng. 2011, 58, 2272–2279. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sue, C. Noninvasive Blood Pressure Measurement Using PVDF Fibers Fabricated by NFES and A Photoplethysmography Sensor. J. Autom. Control Eng. 2017, 7, 34–38. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, Y.; Zhang, S.; Geng, X.; Wang, Y.; Chen, C.; Zhang, H. Respiration Signal Extraction from Pulse Wave Collected by PVDF Sensor. IEEE Access 2020, 8, 149878–149886. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, W.; Zhang, D.; Li, N.; Zhang, H. Combination of heterogeneous features for wrist pulse blood flow signal diagnosis via multiple kernel learning. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 598–606. [Google Scholar] [CrossRef]
- Zhang, D.; Zuo, W.; Zhang, D.; Zhang, H.; Li, N. Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features. J. Biomed. Sci. Eng. 2010, 03, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, J.; Wen, B.; He, Q.; Li, Y.; Miao, F. Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals. Sensors 2018, 18, 4227. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Chen, J.; Liu, Y. Micro-piezoelectric pulse diagnoser and frequency domain analysis of human pulse signals. J. Tradit. Chin. Med. Sci. 2018, 5, 35–42. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, J.; Xu, L.; Wang, F.; Zhang, X.; Li, G.; Fang, P.; Zhu, G. A Piezoelectret-based Flexible Sensor for Pulse Monitoring. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018; pp. 13–16. [Google Scholar]
- Wang, Y.; Lee, S.; Yokota, T.; Wang, H.; Jiang, Z.; Wang, J.; Koizumi, M.; Someya, T. A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 2020, 6, 7043. [Google Scholar] [CrossRef]
- Hu, C.; Chung, Y.; Yeh, C.; Luo, C. Temporal and spatial properties of arterial pulsation measurement using pressure sensor array. Evid. Based Complementary Altern. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Zhang, A.; Gu, J.; Chen, X.; Wang, Q.; Yang, L.; Chou, Y.; Liu, G.; Wang, J. Detection of multipoint pulse waves and dynamic 3D pulse shape of the radial artery based on binocular vision theory. Comput. Methods Programs Biomed. 2018, 155, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Malinauskas, K.; Palevicius, P.; Ragulskis, M.; Ostasevicius, V.; Dauksevicius, R. Validation of noninvasive MOEMS-assisted measurement system based on CCD sensor for radial pulse analysis. Sensors 2013, 13, 5368–5380. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chang, R.; Jwo, K.; Hsu, C.; Tsao, C. A non-contact pulse automatic positioning measurement system for traditional chinese medicine(cmos). Sensors 2015, 15, 9899–9914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.; Su, Y.; Zhang, C.; Xu, X.; Gao, Z.; Wu, S.; Zhang, Q.; Wu, X. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation. Opt. Lasers Eng. 2017, 98, 76–82. [Google Scholar] [CrossRef]
- Jia, D.; Chao, J.; Li, S.; Zhang, H.; Yan, Y.; Liu, T.; Sun, Y. A Fiber Bragg Grating Sensor for Radial Artery Pulse Waveform Measurement. IEEE Trans. Biomed. Eng. 2018, 65, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Leitão, C.; da Costa Antunes, P.; Bastos, J.; Pinto, J.; de Brito André, P. Plastic Optical Fiber Sensor for Noninvasive Arterial Pulse Waveform Monitoring. IEEE Sens. J. 2014, 15, 14–18. [Google Scholar] [CrossRef]
- Johnson, J.; Kim, C.; Shay, O. Arterial Pulse Measurement with Wearable Millimeter Wave Device. In Proceedings of the 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Chicago, IL, USA, 19–22 May 2019; Volume 1746660, pp. 1–4. [Google Scholar] [CrossRef]
- Kim, B.; Hong, Y.; An, Y.; Kim, S.; Lee, H.; Kim, S.; Hong, S.; Yun, G.; Yook, J. A Proximity Coupling RF Sensor for Wrist Pulse Detection Based on Injection-Locked PLL. IEEE Trans. Microw. Theory Tech. 2016, 64, 1667–1676. [Google Scholar] [CrossRef]
- Nie, B.; Li, R.; Brandt, J.D.; Pan, T. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 2014, 14, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Boutry, C.M.; Nguyen, A.; Lawal, Q.O.; Chortos, A.; Rondeau-Gagné, S.; Bao, Z. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 2015, 27, 6954–6961. [Google Scholar] [CrossRef] [PubMed]
- Bai, N.; Wang, L.; Wang, Q.; Deng, J.; Wang, Y.; Lu, P.; Huang, J.; Li, G.; Zhang, Y.; Yang, J.; et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 2020, 11, 209. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Zhong, J.; Liu, H.; Ma, Y.; Liu, N.; Song, Y.; Liang, J.; Shao, Z.; Sun, Y.; Dong, Y.; et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 2018, 28, 1803413. [Google Scholar] [CrossRef]
- Wang, B.; Liu, C.; Xiao, Y.; Zhong, J.; Li, W.; Cheng, Y.; Hu, B.; Huang, L.; Zhou, J. Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered human physiological monitoring. Nano Energy 2017, 32, 42–49. [Google Scholar] [CrossRef]
- Tyan, C.; Liu, S.; Chen, J.; Chen, J.; Liang, W. A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery. IEEE Trans. Biomed. Eng. 2008, 55, 288–297. [Google Scholar] [CrossRef]
- Tang, A.; Chung, J.; Wong, T. Digitalizing Traditional Chinese Medicine Pulse Diagnosis with Artificial Neural Network. Telemed. e-Health 2012, 18, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Yao, L.; Song, H.; Kos, A. A sensor-based wrist pulse signal processing and lung cancer recognition. J. Biomed. Inform. 2018, 79, 107–116. [Google Scholar] [CrossRef]
- Luo, C.; Chung, Y.; Hu, C.; Yeh, C.; Si, X.; Feng, D.; Lee, Y.; Huang, S.; Yeh, S.; Liang, C. Possibility of quantifying TCM finger-reading sensations: I. Bi-Sensing Pulse Diagnosis Instrument. Eur. J. Integr. Med. 2012, 4, 255–262. [Google Scholar] [CrossRef]
- Jin, C.; Xia, C.; Zhang, S.; Wang, L.; Wang, Y.; Yan, H. A wearable combined wrist pulse measurement system using airbags for pressurization. Sensors 2019, 19, 386. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zuo, W.; Zhang, D. A Compound Pressure Signal Acquisition System for Multichannel Wrist Pulse Signal Analysis. IEEE Trans. Instrum. Meas. 2014, 63, 1556–1565. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Lu, G. A Novel Multichannel Wrist Pulse System with Different Sensor Arrays. IEEE Trans. Instrum. Meas. 2015, 64, 2020–2034. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Zhang, Y.; Geng, X.; Zhang, J.; Zhang, H. A novel flexible pressure sensor array for depth information of radial artery. Sens. Actuators A Phys. 2018, 272, 92–101. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.; Zhang, Y.; Zhang, S.; Hou, J.; Zhang, H. A 3D wrist pulse signal acquisition system for width information of pulse wave. Sensors 2020, 20, 11. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Zhang, D.; Lu, G. A Robust Wrist Pulse Acquisition System Based on Multisensor Collaboration and Signal Quality Assessment. IEEE Trans. Instrum. Meas. 2019, 68, 4807–4816. [Google Scholar] [CrossRef]
- Ashraf, T.; Panhwar, Z.; Habib, S.; Memon, M.; Shamsi, F.; Arif, J. Size of radial and ulnar artery in local population. J. Pak. Med. Assoc. 2010, 60, 817–819. [Google Scholar]
- Jiao, D.; Ni, Z.; Wang, J.; Li, X. Ultra-small pressure sensors fabricated using a scar-free microhole inter-etch and sealing (MIS) process. J. Micromech. Microeng. 2020, 30, 065012. [Google Scholar] [CrossRef]
- Kohara, K.; Tabara, Y.; Oshiumi, A.; Miyawaki, Y.; Kobayashi, T.; Miki, T. Radial augmentation index: A useful and easily obtainable parameter for vascular aging. Am. J. Hypertens. 2005, 18, 11–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, R.; Hayward, C.; Avolio, A.; O’rourke, M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989, 80, 1652–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, T.; Correia, C.; Cardoso, J. Novel methods for pulse wave velocity measurement. J. Med. Biol. Eng. 2015, 35, 555–565. [Google Scholar] [CrossRef] [Green Version]
Volunteer | Diastolic Diameter (cm) | Systolic Diameter (cm) | ΔD (cm) | Ds |
---|---|---|---|---|
1 | 0.20 | 0.25 | 0.05 | 0.331 |
2 | 0.21 | 0.26 | 0.05 | 0.276 |
3 | 0.19 | 0.22 | 0.03 | 0.175 |
Volunteer | L (cm) | PWV1 (m/s) | PWV2 (m/s) | abs (PWV1-PWV2) (m/s) |
---|---|---|---|---|
1 | 21.0 | 7.76 | 7.78 | 0.02 |
2 | 22.5 | 6.49 | 6.45 | 0.04 |
3 | 21.0 | 7.89 | 8.34 | 0.45 |
4 | 21.0 | 9.19 | 9.16 | 0.03 |
5 | 21.5 | 7.42 | 7.37 | 0.05 |
6 | 21.0 | 6.63 | 6.52 | 0.11 |
7 | 21.0 | 9.52 | 9.53 | 0.01 |
8 | 21.5 | 8.34 | 8.39 | 0.05 |
9 | 23.0 | 9.57 | 9.32 | 0.25 |
10 | 21.0 | 5.87 | 5.72 | 0.15 |
11 | 21.5 | 7.83 | 7.91 | 0.08 |
12 | 20.5 | 5.43 | 5.43 | 0.00 |
13 | 20.5 | 10.37 | 10.53 | 0.16 |
14 | 20.5 | 4.38 | 4.50 | 0.12 |
15 | 21.0 | 5.90 | 5.77 | 0.13 |
Mean | 0.11 | |||
Min | 0.00 | |||
Max | 0.45 |
System | Tyan et al. [32] | Hu et al. [18] | Wang et al. [37] | Jin et al. [36] | Chen et al. [40] | Proposed |
---|---|---|---|---|---|---|
Number of sensors | One | 3 × 4 | Three main sensor 12 × 3 sub-sensors | Three | 3 × 4 | 3 × 18 |
Single sensor size(mm) | Φ12 | 2.5 × 2.5 | Main: 5 × 3 Sub: 0.8 × 8 | 5.6 × 5.6 | 5.5 × 3.6 | 0.4 × 0.4 |
Flexible sensor array | No | No | No | No | Yes | Yes |
Wearable | No | No | No | No | No | Yes |
Sensor positioning | No | No | Yes | No | No | Yes |
Pulse width information | No | No | Yes | No | Yes | Yes |
Pulse wave velocity measurement | No | No | No | No | No | Yes |
Publication Year | 2008 | 2012 | 2014 | 2019 | 2019 | 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Sun, K.; Zheng, R.; Sun, Y.; Yang, H.; Zhong, Y.; Li, X. Three-Dimensional Arterial Pulse Signal Acquisition in Time Domain Using Flexible Pressure-Sensor Dense Arrays. Micromachines 2021, 12, 569. https://doi.org/10.3390/mi12050569
Chen J, Sun K, Zheng R, Sun Y, Yang H, Zhong Y, Li X. Three-Dimensional Arterial Pulse Signal Acquisition in Time Domain Using Flexible Pressure-Sensor Dense Arrays. Micromachines. 2021; 12(5):569. https://doi.org/10.3390/mi12050569
Chicago/Turabian StyleChen, Jianzhong, Ke Sun, Rong Zheng, Yi Sun, Heng Yang, Yifei Zhong, and Xinxin Li. 2021. "Three-Dimensional Arterial Pulse Signal Acquisition in Time Domain Using Flexible Pressure-Sensor Dense Arrays" Micromachines 12, no. 5: 569. https://doi.org/10.3390/mi12050569
APA StyleChen, J., Sun, K., Zheng, R., Sun, Y., Yang, H., Zhong, Y., & Li, X. (2021). Three-Dimensional Arterial Pulse Signal Acquisition in Time Domain Using Flexible Pressure-Sensor Dense Arrays. Micromachines, 12(5), 569. https://doi.org/10.3390/mi12050569