Effect of Plasma-Enhanced Atomic Layer Deposition on Oxygen Overabundance and Its Influence on the Morphological, Optical, Structural, and Mechanical Properties of Al-Doped TiO2 Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Al-Doped TiO2 (TiO2/Al2O3 Nanolaminates)
2.2. TiO2/Al2O3 Nanolaminate Films Characterizations
3. Results and Discussion
3.1. Chemical Composition, Thickness, and Growth per Cycle
3.2. Structural, Morphological, and Mechanical Properties
3.3. Optical Properties
3.4. Results Comparison with Previous Studies by Other Research Teams
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Listewnik, P.; Bechelany, M.; Jasinski, J.B.; Szczerska, M. ZnO ALD-coated microsphere-based sensors for temperature measurements. Sensors 2020, 20, 4689. [Google Scholar] [CrossRef] [PubMed]
- Viter, R.; Chaaya, A.A.; Iatsunskyi, I.; Nowaczyk, G.; Kovalevskis, K.; Erts, D.; Miele, P.; Smyntyna, V.; Bechelany, M. Tuning of ZnO 1D nanostructures by atomic layer deposition and electrospinning for optical gas sensor applications. Nanotechnology 2015, 26, 105501. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Prasek, J.; Zazpe, R.; Pytlicek, Z.; Spotz, Z.; Pereira, J.R.; Michalicka, J.; Prikryl, J.; Krbal, M.; Sopha, H.; et al. Atomic layer deposition of SnO2-coated anodic one-dimensional TiO2 nanotube layers for low concentration NO2 sensing. ACS Appl. Mater. Interfaces 2020, 12, 33386–33396. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hsieh, C.; Su, G. The role of ALD-ZnO seed layers in the growth of ZnO nanorods for hydrogen sensing. Micromachines 2019, 10, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Jin, B.; He, X.; White, T.A.; Liang, X. Highly active and stable Fe/SiO2 catalyst synthesized by atomic layer deposition for CO oxidation. Catal. Lett. 2020, 150, 3296–3303. [Google Scholar] [CrossRef]
- Lou, C.; Yang, C.; Zheng, W.; Liu, X.; Zhang, J. Atomic layer deposition of ZnO on SnO2 nanospheres for enhanced formaldehyde detection. Sens. Actuators B Chem 2021, 329, 129218. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, W.; Wu, W.; Liu, B. Research progress on flexible oxide-based thin film transistors. Appl. Sci. 2019, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Vollet, D.R.; Donatti, D.A.; Awano, C.M.; Chiappim, W., Jr.; Vicelli, M.R.; Ruiz, A.I. Structure and aggregation kinetics of vinyl triethoxysilane-derived organic/silica hybrids. J. Appl. Crystallogr. 2010, 43, 1005–1011. [Google Scholar] [CrossRef]
- Vollet, D.R.; Donatti, D.A.; Awano, C.M.; Chiappim, W., Jr.; de Vicente, F.S. Dynamic scaling and growth kinetics of 3-glycidoxypropyltrimethoxysilane-derived organic/silica hybrids. Macromolecules 2011, 44, 6849–6855. [Google Scholar] [CrossRef]
- Chiappim, W., Jr.; Awano, C.M.; Donatti, D.A.; de Vicente, F.S.; Vollet, D.R. Structure of hydrophobic ambient-pressure-dried aerogels prepared by sonohydrolysis of tetraethoxysilane with additions of N,N-dimethylformamide. Langmuir 2014, 30, 1151–1159. [Google Scholar] [CrossRef]
- Gaspera, E.D.; Martucci, A. Sol-Gel thin Films for plasmonic gas sensors. Sensors 2015, 15, 16910–16928. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.M.; Rao, S.; Yang, X.; Dubey, S.; Mays, J.; Cao, H.; Chiao, J.-C. Sol-Gel deposition of iridium oxide for biomedical micro-devices. Sensors 2015, 15, 4212–4228. [Google Scholar] [CrossRef] [Green Version]
- Maurya, D.K.; Saradarinejad, A.; Alameh, K. Recent developments in R.F. magnetron sputtered thin films for pH sensing applications—An overview. Coatings 2014, 4, 756–771. [Google Scholar] [CrossRef]
- Cunha, C.L.A.; Pimenta, T.C.; Fraga, M.A. Growth and properties of sputtered highly (100)-oriented oxygenated AlN thin films for SAW sensing applications. Microsyst. Technol. 2021. [Google Scholar] [CrossRef]
- Fraga, M.; Pessoa, R. Progresses in synthesis and application of SiC films: From CVD to ALD and from MEMS to NEMS. Micromachines 2020, 11, 799. [Google Scholar] [CrossRef]
- Ambardekar, V.; Bandyopadhyay, P.P.; Majumber, S.B. Plasma sprayed copper oxide sensor for selective sensing of carbon monoxide. Mater. Chem. Phys. 2021, 258, 123966. [Google Scholar] [CrossRef]
- Miranda, F.S.; Caliari, F.R.; Campos, T.M.; Leite, D.M.G.; Pessoa, R.S.; Essiptchouk, A.M.; Petraconi, G. High-velocity plasma spray process using hybrid SiO2 + ZrO2 precursor for deposition of environmental barrier coatings. Surf. Coat. Technol. 2020, 404, 126447. [Google Scholar] [CrossRef]
- Kim, H.W.; Na, H.G.; Kwon, Y.J.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Kim, S.S. Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interfaces 2017, 9, 31667–31682. [Google Scholar] [CrossRef]
- Sousa, D.M.; Chiappim, W.; Leitão, J.P.; Lima, J.C.; Ferreira, I. Microwave synthesis of silver sulfide and silver nanoparticles: Light and time influence. ACS Omega 2020, 5, 12877–12881. [Google Scholar] [CrossRef]
- Hirsch, M.; Majchrowicz, D.; Wierzba, P.; Weber, M.; Bechelany, M.; Jedrzejewska-Szczerska, M. Low-coherence interferometric fiber-optic sensors with potential applications as biosensors. Sensors 2017, 17, 261. [Google Scholar] [CrossRef] [Green Version]
- Listewnik, P.; Hirsch, M.; Struk, P.; Weber, M.; Bechelany, M.; Jedrzejewska-Szczerska, M. Preparation and characterization of microsphere ZnO ALD coating dedicated for the fiber-optic refractive index sensor. Nanomaterials 2019, 9, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, M.; Graniel, O.; Balme, S.; Miele, P.; Bechelany, M. On the use of MOFs and ALD layers as nanomembranes for the enhancement of gas sensors selectivity. Nanomaterials 2019, 9, 1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.; Ahn, C.; Jeon, S.; Park, J. Atomic layer deposition of inorganic thin films on 3D polymer nanonetworks. Appl. Sci. 2019, 9, 1990. [Google Scholar] [CrossRef] [Green Version]
- Testoni, G.E.; Chiappim, W.; Pessoa, R.S.; Fraga, M.A.; Miyakawa, W.; Sakane, K.K.; Galvão, N.K.A.M.; Vieira, L.; Maciel, H.S. Influence of the Al2O3 partial-monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties. J. Phys. D Appl. Phys. 2016, 49, 375301. [Google Scholar] [CrossRef]
- Chiappim, W.; Testoni, G.E.; Moraes, R.S.; Pessoa, R.S.; Sagás, J.C.; Origo, F.D.; Vieira, L.; Maciel, H.S. Structural, morphological, and optical properties of TiO2 thin films grown by atomic layer deposition on fluorine doped tin oxide conductive glass. Vacuum 2016, 123, 91–102. [Google Scholar] [CrossRef]
- Chiappim, W.; Testoni, G.E.; de Lima, J.S.B.; Medeiros, H.S.; Pessoa, R.S.; Grigorov, K.G.; Vieira, L.; Maciel, H.S. Effect of process temperature and reaction cycle number on atomic layer deposition of TiO2 thin films using TiCl4 and H2O precursors: Correlation between material properties and process environment. Braz. J. Phys. 2016, 46, 56–69. [Google Scholar] [CrossRef]
- Chiappim, W.; Testoni, G.E.; Doria, A.C.O.C.; Pessoa, R.S.; Fraga, M.A.; Galvão, N.K.A.M.; Grigorov, K.G.; Vieira, L.; Maciel, H.S. Relationships among growth mechanism, structure and morphology of PEALD TiO2 films: The influence of O2 plasma power, precursor chemistry and plasma exposure mode. Nanotechnology 2016, 27, 305701. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, R.S.; Pereira, F.P.; Testoni, G.E.; Chiappim, W.; Maciel, H.S.; Santos, L.V. Effect of substrate type on structure of TiO2 thin film deposited by atomic layer deposition technique. JICS 2015, 10, 38–42. [Google Scholar] [CrossRef]
- Chiappim, W.; Fraga, M.A.; Maciel, H.S.; Pessoa, R.S. An experimental and theoretical study of the impact of the precursor pulse time on the growth per cycle and crystallinity quality of TiO2 thin films grown by ALD and PEALD technique. Front. Mech. Eng. 2020, 6, 551085. [Google Scholar] [CrossRef]
- Chiappim, W.; Watanabe, M.; Dias, V.; Testoni, G.; Rangel, R.; Fraga, M.; Maciel, H.; dos Santos Filho, S.; Pessoa, R. MOS capacitance measurements for PEALD TiO2 dielectric films grown under different conditions and the impact of Al2O3 partial-monolayer insertion. Nanomaterials 2020, 10, 338. [Google Scholar] [CrossRef] [Green Version]
- Fredj, Z.; Baraket, A.; Ali, M.B.; Zine, N.; Zabala, M.; Bausells, J.; Elaissari, A.; Benson, N.U.; Jaffrezic-Renault, N.; Errachid, A. Capacitance electrochemical pH sensor based on different hafnium dioxide (HfO2) thicknesses. Chemosensors 2021, 9, 13. [Google Scholar] [CrossRef]
- Pessoa, R.S.; dos Santos, V.P.; Cardoso, S.B.; Doria, A.C.O.C.; Figueira, F.R.; Rodrigues, B.V.M.; Testoni, G.E.; Fraga, M.A.; Marciano, F.R.; Lobo, A.O.; et al. TiO2 coatings via atomic layer deposition on polyurethane and polydimethylsiloxane substrates: Properties and effects on C. albicans growth and inactivation process. Appl. Surf. Sci. 2017, 422, 73–84. [Google Scholar] [CrossRef]
- Dias, V.M.; Chiappim, W.; Fraga, M.A.; Maciel, H.S.; Marciano, F.R.; Pessoa, R.S. Atomic layer deposition of TiO2 and Al2O3 thin films for the electrochemical study of corrosion protection in aluminum alloy cans used in beverage. Mater. Res. Express 2020, 7, 076408. [Google Scholar] [CrossRef]
- Dias, V.; Maciel, H.; Fraga, M.; Lobo, A.O.; Pessoa, R.; Marciano, F.R. Atomic layer deposited TiO2 and Al2O3 thin films as coatings for aluminum food packaging application. Materials 2019, 12, 682. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, R.S.; Fraga, M.A.; Chiappim, W.; Maciel, H.S. Exploring the properties and fule cell applications of ultrathin atomic layer deposited metal oxide films. In Emerging Materials for Energy Conversion and Storage, 1st ed.; Cheong, K.Y., Impellizzeri, G., Fraga, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 83–114. [Google Scholar]
- Curado, M.A.; Teixeira, J.P.; Monteiro, M.; Ribeiro, E.F.M.; Vilão, R.C.; Alberto, H.V.; Cunha, J.M.V.; Lopes, T.S.; Oliveira, K.; Donzel-Gargand, O.; et al. Front passivation of Cu(In,Ga)Se2 solar cells using Al2O3: Culprits and benefits. Appl. Mater. Today 2020, 21, 100867. [Google Scholar] [CrossRef]
- Paussa, L.; Guzman, L.; Marin, E.; Isomaki, N.; Fedrizzi, L. Protection of silver surfaces against tarnishing by means of alumina/titania-nanolayers. Surf. Coat. Technol. 2011, 206, 976–980. [Google Scholar] [CrossRef]
- Khan, M.R.; Kim, H.G.; Park, J.S.; Shin, J.W.; Nguyen, C.T.; Lee, H.-B.-R. Tunable color coating of e-textiles by atomic layer deposition of multilayer TiO2/Al2O3 films. Langmuir 2020, 36, 2794–2801. [Google Scholar] [CrossRef]
- Weber, M.; Julbe, A.; Kim, S.S.; Bechelany, M. Atomic layer deposition (ALD) on inorganic or polymeric membranes. J. Appl. Phys. 2019, 126, 041101. [Google Scholar] [CrossRef]
- Weber, M.; Julbe, A.; Ayral, A.; Miele, P.; Bechelany, M. Atomic layer deposition for membranes: Basics, challenges, and opportunities. Chem. Mater. 2018, 30, 7368–7390. [Google Scholar] [CrossRef]
- Mattinen, M.; Popov, G.; Vehkamäki, M.; King, P.J.; Mizohata, K.; Jalkanen, P.; Räisänen, J.; Leskelä, M.; Ritala, M. Atomic layer deposition of emerging 2D semiconductors, HfS2 and ZrS2, for optoelectronics. Chem. Mater. 2019, 31, 5713–5724. [Google Scholar] [CrossRef] [Green Version]
- Donetti, L.; Gámiz, F.; Rodriguez, N.; Godoy, A.; Sampedro, C. The Effect of surface roughness scattering on hole mobility in double gate silicon-on-insulator devices. J. Appl. Phys. 2009, 106, 023705. [Google Scholar] [CrossRef]
- Jehl, Z.; Bouttemy, M.; Lincot, D.; Guillemoles, J.F.; Gerard, I.; Etcheberry, A.; Voorwinden, G.; Powalla, M.; Naghavi, N. Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells. J. Appl. Phys. 2012, 111, 114509. [Google Scholar] [CrossRef]
- Basiaga, M.; Staszuk, M.; Walke, W.; Opilski, Z. Mechanical properties of atomic layer deposition (ALD) TiO2 layers on stailess steel substrates. Mat. Wiss. U. Werkstofftech. 2016, 47, 512–520. [Google Scholar] [CrossRef]
- Alasaarela, T.; Saastamoinen, T.; Hiltunen, J.; Säynätjoki, A.; Tervenon, A.; Stenberg, P.; Kuittinen, M.; Honkanen, S. Atomic layer deposited titanium dioxide and its application in resonant waveguide grating. Appl. Opt. 2010, 49, 4321. [Google Scholar] [CrossRef]
- Puurunen, R.L. Formation of metal oxide particles in atomic layer deposition during the chemisorption of metal chlorides: A review. Chem. Vap. Depos. 2005, 11, 79–90. [Google Scholar] [CrossRef]
- Pore, V.; Kivelä, T.; Ritala, M.; Leskelä, M. Atomic layer deposition of photocatalytic TiO2 thin films from TiF4 and H2O. Dalton Trans. 2008, 45, 6467–6474. [Google Scholar] [CrossRef]
- Gebhard, M.; Mitschker, F.; Wiesing, M.; Giner, I.; Torun, B.; de los Arcos, T.; Awakowicz, P.; Grundmeier, D.A. An efficient PE-ALD process for TiO2 thin films employing a new Ti-precursor. J. Mater. Chem. C 2016, 4, 1057–1065. [Google Scholar] [CrossRef] [Green Version]
- Ylivaara, O.M.E.; Kilpi, L. Aluminum oxide/titanium dioxide nanolaminates grown by atomic layer deposition: Growth and mechanical properties. J. Vac. Sci. Technol. A 2016, 35, 01B105. [Google Scholar] [CrossRef]
- Ali, S.; Juntunen, T.; Sintonen, S.; Ylivaara, O.M.E.; Puurunnen, R.L.; Lipsanen, H.; Tittonen, I.; Hannula, S.-P. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition. Nanotechnology 2016, 27, 445704. [Google Scholar] [CrossRef]
- Niemelä, J.-P.; Marin, G.; Karppinen, M. Titanium dioxide thin films by atomic layer deposition: A review. Semicond. Sci. Technol. 2017, 32, 093005. [Google Scholar] [CrossRef]
- Arts, K.; Utriainen, M.; Puurunen, R.L.; Kessels, W.M.M.; Knoops, H.C.M. Film conformality and extracted recombination probabilities of O atoms during plasma-assisted atomic layer deposition of SiO2, TiO2, Al2O3, and HfO2. J. Phys. Chem. C 2019, 123, 27030–27035. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Pattinson, J. Advanced thin conformal Al2O3 films for high aspect ratio mercury cadmium telluride sensors. Opt. Eng. 2012, 51, 104003. [Google Scholar] [CrossRef]
- Kim, H.L.; Kim, K.; Park, S.; Jeong, Y.J.; Kim, H.; Chung, D.S.; Kim, S.H.; Park, C.E. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 2014, 6, 6731–6738. [Google Scholar] [CrossRef]
- Mai, L.; Mitschker, F.; Bock, C.; Niesen, A.; Ciftyurek, E.; Rogalla, D.; Mickler, J.; Erig, M.; Li, Z.; Awakowicz, P.; et al. From precursor chemistry to gas sensors: Plasma-enhanced atomic layer deposition process engineering for zinc oxide layers from a nonpyrophoric zinc precursor for gas barrier and sensor applications. Small 2020, 16, 1907506. [Google Scholar] [CrossRef] [PubMed]
- Pore, V.; Rahtu, A.; Leskelä, M.; Ritala, M.; Sajavaara, T.; Keinonen, J. Atomic layer deposition of photocatalytic TiO2 thin films from titanium tetramethoxide and water. Chem. Vap. Depos. 2004, 10, 143–148. [Google Scholar] [CrossRef]
- Aarik, J.; Aidla, A.; Uustare, T.; Sammelselg, V. Morphology and structure of TiO2 thin films grown by atomic layer deposition. J. Crys. Growth 1995, 148, 268–275. [Google Scholar] [CrossRef]
- Puurunen, R.K. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 2005, 97, 121301. [Google Scholar] [CrossRef]
- Jakschik, S.; Schroeder, U.; Hecht, T.; Gutsche, M.; Seidl, H.; Bartha, J.W. Crystallization behavior of thin ALD-Al2O3 films. Thin Solid Films 2003, 425, 216–220. [Google Scholar] [CrossRef]
- Choi, G.-J.; Kim, S.K.; Won, S.-J.; Kim, H.J.; Hwang, C.S. Plasma-enhanced atomic layer deposition of TiO2 and Al-doped TiO2 films using N2O and O2 Reactants. J. Electrochem. Soc. 2009, 156, G138. [Google Scholar] [CrossRef]
- Kim, S.K.; Choi, G.-J.; Lee, S.Y.; Seo, M.; Lee, S.W.; Han, J.H.; Ahn, H.-S.; Han, S.; Hwang, C.S. Al-doped TiO2 films with ultralow leakage currents for next generation DRAM capacitors. Adv. Mater. 2008, 20, 1429–1435. [Google Scholar] [CrossRef]
- Kim, S.K.; Han, S.; Jeon, W.; Yoon, J.H.; Han, J.H.; Lee, W.; Hwang, C.S. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films. ACS Appl. Mater. Interfaces 2012, 4, 4726–4730. [Google Scholar] [CrossRef] [PubMed]
- LAMFI. Available online: http://deuterio.if.usp.br/multisimnra/ (accessed on 26 February 2021).
- Pharr, G.M. Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng. A 1998, 253, 151–159. [Google Scholar] [CrossRef]
- Galanov, B.A.; Dub, S.N. Critical comments to the Oliver–Pharr measurement technique of hardness and elastic modulus by instrumented indentations and refinement of its basic relations. J. Superhard Mater. 2017, 39, 373–389. [Google Scholar] [CrossRef]
- Necas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar]
- Wei, D.; Hossain, T.; Garces, N.Y.; Nepal, N.; Meyer, H.M., III; Kirkham, M.J.; Eddy, C.R., Jr.; Edgar, J.H. Influence of atomic layer deposition temperatures on TiO2/n-Si MOS capacitor. ECS J. Solid State Sci. Technol. 2013, 2, N110–N114. [Google Scholar] [CrossRef] [Green Version]
- Ratzsch, S.; Kley, E.-B.; Tünnermann, A.; Szeghalmi, A. Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide. Nanotechnology 2015, 26, 024003. [Google Scholar] [CrossRef]
- Bousoulas, P.; Michelakaki, I.; Tsoukalas, D. Influence of oxygen content of room temperature TiO2−x deposited films for enhanced resistive switching memory performance. J. Appl. Phys. 2014, 115, 034516. [Google Scholar] [CrossRef]
- Faraz, T.; Arts, K.; Karwal, S.; Knoops, H.C.M.; Kessels, W.M.M. Energetic ions during plasma-enhanced atomic layer deposition and their role in tailoring material properties. Plasma Sources Sci. Technol. 2019, 28, 024002. [Google Scholar] [CrossRef]
- Herman, G.S.; Zehr, R.T.; Henderson, M.A. Characterization of oxygen and titanium diffusion at anatase TiO2 (001) surface. Surf. Sci. Lett. 2013, 612, L5–L8. [Google Scholar] [CrossRef]
- Paris, A.; Taioli, S. Multiscale investigation of oxygen vacancies in TiO2 anatase and their role in memristor’s behavior. J. Phys. Chem. C 2016, 120, 22045–22053. [Google Scholar] [CrossRef]
- Schneider, J.R.; Baker, J.G.; Bent, S.F. The influence of ozone: Superstoichiometric oxygen in atomic layer deposition of Fe2O3 using tert-Butylferrocene and O3. Adv. Mater. Interfaces 2020, 7, 2000318. [Google Scholar] [CrossRef]
- Xu, C.Y.; Zhang, P.X.; Yan, L. Blue shift of Raman peak from TiO2 nanoparticles. J. Raman Spectrosc. 2001, 32, 862–865. [Google Scholar] [CrossRef]
- Bassi, A.L.; Cattaneo, D.; Russo, V.; Bottani, C.E.; Barborini, E.; Mazza, T.; Piseri, P.; Miliani, P.; Ernst, F.O.; Wegner, K.; et al. Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry. J. Appl. Phys. 2005, 98, 074305. [Google Scholar] [CrossRef]
- Parker, J.C.; Siegel, R.W. Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl. Phys. Lett. 1990, 57, 943. [Google Scholar] [CrossRef]
- Lee, W.-J.; Hon, M.-H. Space-limited crystal growth mechanism of TiO2 films by atomic layer deposition. J. Phys. Chem. C 2010, 114, 6917–6921. [Google Scholar] [CrossRef]
- Ghazaryan, L.; Handa, S.; Schmitt, P.; Beladiya, V.; Roddatis, V.; Tünnermann, A.; Szeghalmi, A. Structural, optical, and mechanical properties of TiO2 nanolaminates. Nanotechnology 2021, 32, 095709. [Google Scholar] [CrossRef]
- Mohammed, Y.S.; Zhang, K.; Lin, P.; Baumgart, H.; Elmustafa, A.A. Investigation of the nanomechanical properties of crystalline anatase titanium dioxide films synthesized using atomic layer deposition. JOM 2021, 73, 534–540. [Google Scholar] [CrossRef]
- Tripp, M.K.; Stamper, C.; Miller, D.C.; Helbling, T.; Herrmann, C.F.; Hierold, C.; George, S.M.; Bright, V.M. The mechanical properties of atomic layer deposited alumina for use in micro- and nano- electromechanical systems. Sens. Actuators A 2006, 130–131, 419–429. [Google Scholar] [CrossRef]
- Coy, E.; Yate, L.; Kabacinska, Z.; Jancelewicz, M.; Jurga, S.; Iatsunskui, I. Topographic reconstruction and mechanical analysis of atomic layer deposited Al2O3/TiO2 nanolaminates by nanoindentation. Mater. Des. 2016, 111, 584–591. [Google Scholar] [CrossRef]
- Borgese, L.; Gelfi, M.; Bontempi, E.; Goudeau, P.; Geandier, G.; Thiaudière, D.; Depero, L.E. Young modulus and Poisson ratio measurements of TiO2 thin films deposited with atomic layer deposition. Surf. Coat. Technol. 2011, 206, 2459–2463. [Google Scholar] [CrossRef]
- Sreemany, M.; Sen, S. A simple spectrophotometric method for determination of thr optical constants and band gap energy of multiple layer TiO2 thin films. Mater. Chem. Phys. 2004, 83, 169–177. [Google Scholar] [CrossRef]
- Weng, Y.; Chen, G.; Zhou, X.; Yan, Q.; Guo, T.; Zhang, Y. Design and fabrication of bi-functional TiO2/Al2O3 nanolaminates with selected light extraction and reliable moisture vapor barrier performance. Nanotechnology 2018, 30, 085702. [Google Scholar] [CrossRef]
- Scalon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Triani, G.; Evans, P.J.; Mitchell, D.R.G.; Attard, D.J.; Finnie, K.S.; James, M.; Hanley, T.; Latella, B.; Prince, K.E.; Barlett, J. Atomic layer deposition of TiO2/Al2O3 for optical applications. Proc. SPIE 2005, 5870, 587009. [Google Scholar]
- Kim, Y.S.; Yun, S.J. Nanolaminated Al2O3-TiO2 thin films grown by atomic layer deposition. J. Crys. Growth 2005, 274, 585–593. [Google Scholar] [CrossRef]
- Jõgi, I.; Kukli, K.; Kemell, M.; Ritala, M.; Leskelä, M. Electrical characterization of AlxTiyOz mixtures and Al2O3-TiO2-Al2O3 nanolaminates. J. Appl. Phys. 2007, 102, 114114. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, S.W.; Seo, M.; Han, J.H.; Lee, S.Y.; Hwang, C.S. Dielectric and electrode thin films for stack-cell structured DRAM capacitors with sub 50-nm design rules. ECS Trans. 2007, 6, 137–150. [Google Scholar] [CrossRef]
- Kim, S.K.; Choi, G.-J.; Hwang, C.S. Controlling the composition of doped materials by ALD: A case study for Al-doped TiO2 films. Electrochem. Solid State Lett. 2008, 11, G27–G29. [Google Scholar] [CrossRef]
- Kim, S.K.; Choi, G.J.; Kim, J.H.; Hwang, C.S. Growth behavior of Al-doped TiO2 thin films by atomic layer deposition. Chem. Mater. 2008, 20, 3723–3727. [Google Scholar] [CrossRef]
- Alasaarela, T.; Karvonen, L.; Jussila, H.; Säynätjoki, A.; Mehravar, S.; Norwood, R.A.; Peyghambarian, N.; Kieu, K.; Tittonen, I.; Lipsanen, H. High-quality crystallinity controlled ALD TiO2 for waveguiding applications. Opt. Lett. 2013, 38, 3980–3983. [Google Scholar] [CrossRef]
- Aarik, L.; Arroval, T.; Rammula, R.; Mändar, H.; Sammelselg, V.; Hudec, B.; Huseková, K.; Fröhlich, K.; Aarik, J. Atomic layer deposition of high-quality Al2O3 and Al-doped TiO2 thin films from hydrogen-free precursors. Thin Solid Films 2014, 565, 19–24. [Google Scholar] [CrossRef]
- Iatsunskyi, I.; Coy, E.; Viter, R.; Nowaczyk, G.; Jancelewicz, M.; Baleviciute, I.; Zaleski, K.; Jurga, S. Study on structural, mechanical, and optical properties of Al2O3-TiO2 nanolaminates prepared by atomic layer deposition. J. Phys. Chem. C 2015, 119, 20591–20599. [Google Scholar] [CrossRef]
ALD 1 and PEALD Samples | Pulse Ratio [Al]/[Al + Ti] | Supercycle [ALD TiO2 Cycles]/[ALD Al2O3 Cycles] |
---|---|---|
0% Al(T) and 0% Al(P) | 0 | TiO2 |
0.4% Al(T) and 0.4% Al(P) | 0.004 | 270/1 |
1.2% Al(T) and 1.2% Al(P) | 0.012 | 90/1 |
1.6% Al(T) and 1.6% Al(P) | 0.016 | 60/1 |
3.2% Al(T) and 3.2% Al(P) | 0.032 | 30/1 |
Al2O3 (T) and Al2O3 (P) | 1 | Al2O3 |
Sample | Ti (%) | O (%) | Al (%) | Thickness (nm) | GPC (nm/Cycle) |
---|---|---|---|---|---|
0.4% Al(P) | 30 ± 1 | 70 ± 1 | 1 ± 1 | 130 ± 1 | 0.048 ± 0.005 |
1.2% Al(P) | 31 ± 1 | 67 ± 1 | 2 ± 1 | 130 ± 1 | 0.048 ± 0.005 |
1.6% Al(P) | 32 ± 1 | 65 ± 1 | 3 ± 1 | 143 ± 1 | 0.052 ± 0.005 |
3.2% Al(P) | 34 ± 1 | 60 ± 1 | 6 ± 1 | 160 ± 1 | 0.057 ± 0.005 |
0.4% Al(T) | 37 ± 1 | 60 ± 1 | 3 ± 1 | 88 ± 1 | 0.032 ± 0.005 |
1.2% Al(T) | 31 ± 1 | 63 ± 1 | 6 ± 1 | 83 ± 1 | 0.030 ± 0.005 |
1.6% Al(T) | 27 ± 1 | 64 ± 1 | 9 ± 1 | 76 ± 1 | 0.028 ± 0.005 |
3.2% Al(T) | 25 ± 1 | 64 ± 1 | 11 ± 1 | 83 ± 1 | 0.030 ± 0.005 |
Crystalline Samples | Raman-Active Modes 1 (cm−1) | Peak Position (cm−1) | FWHM (cm−1) | Integrated Area (a.u.) |
---|---|---|---|---|
0% Al(P) | Eg | 151 ± 1 | 19 ± 1 | 44.200 |
B1g | 404 ± 1 | 26 ± 1 | 11.900 | |
A1g | 527 ± 1 | 26 ± 1 | 10.700 | |
Eg | 647 ± 1 | 31 ± 1 | 23.900 | |
0.4% Al(P) | Eg | 152 ± 1 | 19 ± 1 | 45.600 |
B1g | 403 ± 1 | 26 ± 2 | 6.800 | |
A1g | 527 ± 1 | 26 ± 1 | 9.500 | |
Eg | 647 ± 1 | 30 ± 1 | 21.250 | |
1.2% Al(P) | Eg | 153 ± 1 | 21 ± 1 | 29.500 |
B1g | 405 ± 1 | 31 ± 1 | 14.000 | |
A1g | 528 ± 1 | 29 ± 1 | 11.700 | |
Eg | 648 ± 1 | 30 ± 1 | 12.700 |
Main Results and Comparison with Present Work | (Precursors) (ALD Window) (Substrate Type) | Reference |
---|---|---|
(i) Amorphous nanolaminates were grown in a bilayer stack (~40 nm of thickness) and a 5 tier multilayer stack (~55 nm of thickness). (ii) The surface hardness of the bilayer was found to be 6 GPa. This result is in agreement with our results that varied from 7 to 9 GPa. (iii) Surface roughness was maintained below 1 nm. These results show that for higher concentrations of Al, the roughness is lower, which is in agreement with our results. | (TiCl4/TMA/H2O) (100–200 °C) (Silicon; SLG; Polycarbonate) | [86] |
(i) It has been shown that nanolaminates are endowed with polycrystalline TiO2 properties in the case of TiO2 layer thickness more significant than some limit value (20 cycles Al2O3 and 600 cycles TiO2) and become amorphous when the intermediate layers of Al2O3 (100 cycles Al2O3 and 450 cycle TiO2) increase its thickness. These results show that for higher concentrations of Al, the nanolaminates’ crystallinity becomes amorphous, following our results. It is worth mentioning that we used a different configuration of doping TiO2 with Al and obtained the same behavior. | (TTIP/TMA/H2O) (250 °C) (Silicon; ITO on Glass) | [87] |
(i) Leakage currents for nanolaminates and mixtures have the lowest leakage for all equivalent oxide thickness values. (ii) Currents in the films became strongly affected by chemical and structural defects induced by the deposition process of Al-doped. | (TiCl4/TMA/H2O) (300–400 °C) (n-Si (100) precovered with 0.6 nm thick SiNx; p-Si (100) with 1.1 nm thick SiO2) | [88] |
(i) The dielectric constants of the Al-doped TiO2 films are lower than that of the un-doped TiO2 films and decreased with the increase of Al concentration. (ii) Current density of Al-doped TiO2 films increased at high applied voltage when the Al concentration in the films was lower. | (TTIP/TMA/O3) (200–230 °C) (Silicon; Sputtered Ru and Pt) | [89] |
(i) The adsorption of the Ti precursor on the growth surface became less active after the incorporation of Al. This behavior decreased the growth rate of TiO2 films doped with Al. It is noteworthy that this behavior is opposite to that achieved in our work, probably due to the O2 plasma used as an oxidizing precursor that activates a more significant number of sites on the surface and increases the growth rate of nanolaminates. | (TTIP/TMA/O3) (250 °C) (Ru(30 nm)/Ta2O5(8 nm)/SiO2(100 nm)/Si) | [90,91] |
(i) The refractive index decreases with the increase of Al2O3 within the TiO2/Al2O3 nanolaminates, which is in line with our results. | (TiCl4/TMA/O3) (250 °C) (Corning glass slides and silicon (100) pieces with thin native oxide) | [92] |
(i) It was showed that in the supercycle 60/1, the nanolaminates grown on Si are crystallines in the anatase phase and become amorphous at the supercycle 15/1. This result is in line with our work | (TiCl4/TMA/O3) (350 °C) (Si and RuO2) | [93] |
(i) nanolaminates are essentially composed by amorphous Al2O3 and small TiO2 crystalline regions for 2, 5, 10, and 20 bilayers composition; (ii) the average transmittance is between 70–95%. It was observed a shift in the maximum transmittance on a range of 375–450 nm wavelengths. In our work, it shifted to 460–750 nm wavelengths with the average transmittance between 60–70%; (iii) the band gap had results similar to our work; (iv) The surface hardness maintained approximately 9 GPa for 2, 5, 10, and 20 bilayers composition. This result is in line with our results; (v) the Young´s and indentation modulus maintained approximately 150 GPa for 2, 5, 10, and 20 bilayers composition. This result is in line with our results; | (TiCl4/TMA/H2O) (200 °C) (p-doped Si (100) and glass substrates) | [94] |
(i) Four sets of different samples were manufactured, one parameter is varied at a time: (a) the growth temperature, (b) the titanium dioxide fraction from 0% to 100%, (c) the bilayer thickness of 0.1 at 100 nm, and (d) the thickness of the nanolaminate from 20 to 300 nm. In all cases the surface hardness, Young´s and indentation modulus maintained approximately 8, 150, and 150 GPa, respectively. | (TiCl4/TMA/H2O) (110–300 °C) (p-type (100) silicon wafers) | [49] |
(i) It was showed that the GPC of Al doped TiO2 films increased by ~10% compared to the growth of pure TiO2 film by the O2 plasma process. This is in line with our results; however, it is in contrast to the lower GPC shown in previous works by the same authors when using the O3-based process [91,92]. | (TTIP/TMA/O2 or N2O plasma) (250 °C) (Ru(30 nm)/Ta2O5(8 nm)/SiO2(100 nm)/Si) | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiappim, W.; Testoni, G.; Miranda, F.; Fraga, M.; Furlan, H.; Saravia, D.A.; Sobrinho, A.d.S.; Petraconi, G.; Maciel, H.; Pessoa, R. Effect of Plasma-Enhanced Atomic Layer Deposition on Oxygen Overabundance and Its Influence on the Morphological, Optical, Structural, and Mechanical Properties of Al-Doped TiO2 Coating. Micromachines 2021, 12, 588. https://doi.org/10.3390/mi12060588
Chiappim W, Testoni G, Miranda F, Fraga M, Furlan H, Saravia DA, Sobrinho AdS, Petraconi G, Maciel H, Pessoa R. Effect of Plasma-Enhanced Atomic Layer Deposition on Oxygen Overabundance and Its Influence on the Morphological, Optical, Structural, and Mechanical Properties of Al-Doped TiO2 Coating. Micromachines. 2021; 12(6):588. https://doi.org/10.3390/mi12060588
Chicago/Turabian StyleChiappim, William, Giorgio Testoni, Felipe Miranda, Mariana Fraga, Humber Furlan, David Ardiles Saravia, Argemiro da Silva Sobrinho, Gilberto Petraconi, Homero Maciel, and Rodrigo Pessoa. 2021. "Effect of Plasma-Enhanced Atomic Layer Deposition on Oxygen Overabundance and Its Influence on the Morphological, Optical, Structural, and Mechanical Properties of Al-Doped TiO2 Coating" Micromachines 12, no. 6: 588. https://doi.org/10.3390/mi12060588
APA StyleChiappim, W., Testoni, G., Miranda, F., Fraga, M., Furlan, H., Saravia, D. A., Sobrinho, A. d. S., Petraconi, G., Maciel, H., & Pessoa, R. (2021). Effect of Plasma-Enhanced Atomic Layer Deposition on Oxygen Overabundance and Its Influence on the Morphological, Optical, Structural, and Mechanical Properties of Al-Doped TiO2 Coating. Micromachines, 12(6), 588. https://doi.org/10.3390/mi12060588