Self-Assembled Monolayers of Alkanethiols on Nickel Insert: Characterization of Friction and Analysis on Demolding Quality in Microinjection Molding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Mold Insert
2.2. SAMs Preparation
2.3. Injection Molding
2.4. Chemical and Structural Characterization
3. Results and Discussion
3.1. Quality Analysis of Mold Insert
3.2. Contact Angles Measurement
3.3. Friction and Wear Test
3.4. Analysis of Demolding Quality
3.5. Duration Analysis of Mold Insert with SAMs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, B.; Wang, L.; Li, J.; Fan, C. Precisely Tailored DNA Nanostructures and their Theranostic Applications. Chem. Rec. 2017, 17, 1213–1230. [Google Scholar] [CrossRef]
- Labrador-Páez, L.; Ximendes, E.C.; Rodríguez-Sevilla, P.; Ortgies, D.H.; Rocha, U.; Jacinto, C.; Martín Rodríguez, E.; Haro-González, P.; Jaque, D. Core-shell rare-earth-doped nanostructures in biomedicine. Nanoscale 2018, 10, 12935–12956. [Google Scholar] [CrossRef] [Green Version]
- Rytka, C.; Kristiansen, P.M.; Neyer, A. Iso- and variothermal injection compression moulding of polymer micro- and nanostructures for optical and medical applications. J. Micromech. Microeng. 2015, 25, 065008. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Y.; Liang, L.; Voigt, J.A.; Huber, D.L.; Tian, Z.R.; Coker, E.; McKenzie, B.; McDermott, M.J. Templateless assembly of molecularly aligned conductive polymer nanowires: A new approach for oriented nanostructures. Chem. A Eur. J. 2003, 9, 604–611. [Google Scholar] [CrossRef]
- Fateixa, S.; Nogueira, H.I.S.; Trindade, T. Hybrid nanostructures for SERS: Materials development and chemical detection. Phys. Chem. Chem. Phys. 2015, 17, 21046–21071. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, H.; He, S.; Sa, T.; Cheng, X.; Xu, R. Design of micro-nano grooves incorporated into suspended GaN membrane for active integrated optics. AIP Adv. 2018, 8, 115118. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.A.; Leech, P.W. Optically variable watermark (OVW) microstructures for transparent substrates. Microelectron. Eng. 2006, 83, 2004–2008. [Google Scholar] [CrossRef]
- Umeyama, T.; Imahori, H. Design and control of organic semiconductors and their nanostructures for polymer-fullerene-based photovoltaic devices. J. Mater. Chem. A 2014, 2, 11545–11560. [Google Scholar] [CrossRef]
- Youn, H.; Park, H.J.; Guo, L.J. Printed Nanostructures for Organic Photovoltaic Cells and Solution-Processed Polymer Light-Emitting Diodes. Energy Technol. 2015, 3, 340–350. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.H.; Chiu, M.C.; Chen, S.C.; Chang, C.W.; Tseng, C.Y. Establishing a rapid cooling complex mold design for the quality improvement of microcellular injection molding. Polym. Eng. Sci. 2020, 60, 3072–3085. [Google Scholar] [CrossRef]
- Bobzin, K.; Brögelmann, T.; Grundmeier, G.; de los Arcos, T.; Wiesing, M.; Kruppe, N.C. (Cr,Al)N/(Cr,Al)ON Oxy-nitride Coatings deposited by Hybrid dcMS/HPPMS for Plastics Processing Applications. Surf. Coatings Technol. 2016, 308, 394–403. [Google Scholar] [CrossRef]
- Zink, B.; Szabó, F.; Hatos, I.; Suplicz, A.; Kovács, N.K.; Hargitai, H.; Tábi, T.; Kovács, J.G. Enhanced injection molding simulation of advanced injection molds. Polymers 2017, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Frettlh, V.; Mumme, F.; Fornalczyk, G.; Sommer, M.; Korres, M. Ceramic Coatings via MOCVD in Injection Molding Tools to Influence Thermal and Demolding Properties. HTM J. Heat Treat. Mater. 2020, 75, 121–133. [Google Scholar] [CrossRef]
- Strohmayer, B.; Struklec, T.; Lucyshyn, T.; Holzer, C. Analysis of factors affecting the demolding of micro-structured devices in the injection molding process. AIP Conf. Proc. 2016, 1779, 020013. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.C.; Chung, C.K. Hydrophilicity and optic property of polyethylene glycol coating on polydimethylsiloxane for fast prototyping and its application to backlight microfluidic chip. Surf. Coat.Technol. 2020, 389, 125606. [Google Scholar] [CrossRef]
- Weng, C.; Yang, D.; Zhou, M. Molecular dynamics simulations on the demolding process for nanostructures with different aspect ratios in injection molding. Micromachines 2019, 10, 636. [Google Scholar] [CrossRef] [Green Version]
- Stormonth-Darling, J.M.; Pedersen, R.H.; How, C.; Gadegaard, N. Injection moulding of ultra high aspect ratio nanostructures using coated polymer tooling. J. Micromech. Microeng. 2014, 24, 075019. [Google Scholar] [CrossRef]
- Masato, D.; Sorgato, M.; Parenti, P.; Annoni, M.; Lucchetta, G. Impact of deep cores surface topography generated by micro milling on the demolding force in micro injection molding. J. Mater. Process. Technol. 2017, 246, 211–223. [Google Scholar] [CrossRef]
- Sasaki, T.; Koga, N.; Shirai, K.; Kobayashi, Y.; Toyoshima, A. Experimental study on ejection forces of injection molding. Precis. Eng. 2000, 24, 270–273. [Google Scholar] [CrossRef]
- Douglas, C.M.; Rouse, W.A.; Driscoll, J.A.; Timpe, S.J. Experimental investigation and molecular dynamics simulations of impact-mode wear mechanisms in silicon micromachines with alkylsilane self-assembled monolayer films. J. Appl. Phys. 2015, 118, 165311. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, Y.; Park, J.; Im, S. Molecular simulation study on adhesions and deformations for Polymethyl Methacrylate (PMMA) resist in nanoimprint lithography. J. Mech. Sci. Technol. 2011, 25, 2311–2322. [Google Scholar] [CrossRef]
- Bowen, J.; Pettitt, M.E.; Kendall, K.; Leggett, G.J.; Preece, J.A.; Callow, M.E.; Callow, J.A. The influence of surface lubricity on the adhesion of Navicula perminuta and Ulva linza to alkanethiol self-assembled monolayers. J. R. Soc. Interface 2007, 4, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chi, W.; Dang, K.; Xie, P.; Yang, W. Improving appearance quality of injection molded microcellular parts through mold coating of PTFE and zirconia. J. Appl. Polym. Sci. 2021, 50828. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Cha, N.-G.; Lee, J.S.; Park, J.-G.; Carter, D.J.; Mead, J.L.; Barry, C.M.F. Effect of processing parameters, antistiction coatings, and polymer type when injection molding microfeatures. Polym. Eng. Sci. 2010, 50, 411–419. [Google Scholar] [CrossRef]
- Şen-Doğan, B.; Okan, M.; Afşar-Erkal, N.; Özgür, E.; Zorlu, Ö.; Külah, H. Enhancement of the start-up time for microliter-scale microbial fuel cells (μMFCs) via the surface modification of gold electrodes. Micromachines 2020, 11, 703. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Luo, W.; Cheng, X. Interfacial interactions during demolding in nanoimprint lithography. Micromachines 2021, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; Wang, F.; Zhou, M.; Yang, D.; Jiang, B. Fabrication of hierarchical polymer surfaces with superhydrophobicity by injection molding from nature and function-oriented design. Appl. Surf. Sci. 2018, 436, 224–233. [Google Scholar] [CrossRef]
- Niu, Y.; Wei, J.; Zhao, J.; Hu, J.; Yu, Z. Preparation and properties of nanosized multilayered Ni coatings by ultrasound-assisted electrodeposition. Acta Metall. Sin. 2013, 49, 1617–1622. [Google Scholar] [CrossRef]
- Qiang, J.; Jiang, B.; Dong, Y.; Roth, B.; Jiang, F. Extension of the Stoney formula for the incremental stress of thin films. Appl. Phys. Lett. 2021, 118, 91604. [Google Scholar] [CrossRef]
- Zhu, J.; Yoo, K.; El-Halees, I.; Kisailus, D. Solution deposition of thin carbon coatings on LiFePO4. ACS Appl. Mater. Interfaces 2014, 6, 21550–21557. [Google Scholar] [CrossRef]
- Ong, R.J.; Dawley, J.T.; Clem, P.G. Chemical solution deposition of biaxially oriented (Ba,Sr)TiO3 thin films on <100> Ni. J. Mater. Res. 2003, 18, 2310–2317. [Google Scholar] [CrossRef]
- Song, W.; Wang, S.; Lu, Y.; An, L.; Zhang, Q.; Sun, K.; Xin, G.; Song, S. Tribological performance of DLC-coated ceramics against cemented carbide under dry sliding conditions. Ceram. Int. 2021, 47, 16926–16934. [Google Scholar] [CrossRef]
- Singh, D.; Patel, H.; Habal, A.; Das, A.K.; Kapgate, B.P.; Rajkumar, K. Evolution of coefficient of friction between tire and pavement under wet conditions using surface free energy technique. Constr. Build. Mater. 2019, 204, 105–112. [Google Scholar] [CrossRef]
Name | Molecular Formula | Molecular Weight | Flash Point (°C) | Purity (%) | Boiling Point (°C) |
---|---|---|---|---|---|
DT | C10H22S | 174 | 98 | 98 | 114 |
DDT | C10H22S2 | 206 | 171 | 99 | 171 |
PFDT | C10H5F17S | 480 | 66 | 97 | 82 |
Mold Temperature (°C) | Melt Temperature (°C) | Injection Rate (mm/s) | Packing Pressure (MPa) | Packing Time (s) | Back Pressure (Mpa) | Cooling Time (s) |
---|---|---|---|---|---|---|
100 | 250 | 18 | 140 | 10 | 5 | 60 |
Type | Rq (nm) | Ra (nm) | Rmax (nm) |
---|---|---|---|
No coating | 1 | 0.724 | 10.4 |
DT | 1.89 | 1.35 | 22.3 |
DDT | 3.48 | 2.78 | 25.5 |
PFDT | 2.14 | 1.69 | 16.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yang, J.; Zhou, M.; Weng, C. Self-Assembled Monolayers of Alkanethiols on Nickel Insert: Characterization of Friction and Analysis on Demolding Quality in Microinjection Molding. Micromachines 2021, 12, 636. https://doi.org/10.3390/mi12060636
Chen J, Yang J, Zhou M, Weng C. Self-Assembled Monolayers of Alkanethiols on Nickel Insert: Characterization of Friction and Analysis on Demolding Quality in Microinjection Molding. Micromachines. 2021; 12(6):636. https://doi.org/10.3390/mi12060636
Chicago/Turabian StyleChen, Jiachen, Jin Yang, Mingyong Zhou, and Can Weng. 2021. "Self-Assembled Monolayers of Alkanethiols on Nickel Insert: Characterization of Friction and Analysis on Demolding Quality in Microinjection Molding" Micromachines 12, no. 6: 636. https://doi.org/10.3390/mi12060636
APA StyleChen, J., Yang, J., Zhou, M., & Weng, C. (2021). Self-Assembled Monolayers of Alkanethiols on Nickel Insert: Characterization of Friction and Analysis on Demolding Quality in Microinjection Molding. Micromachines, 12(6), 636. https://doi.org/10.3390/mi12060636