Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction
Abstract
:1. Introduction
2. Biomimetic Enhanced Heat Transfer Structures
2.1. Fractal-Tree-Like Structure
2.2. Conical Column Structure
2.3. Hybrid Wetting Structure
3. Biomimetic Flow Resistance Reduction Structures
3.1. Scale Structure
3.2. Concave-Convex Structure
3.3. Superhydrophobic Micro-Nano Structure
4. Machining Methods for Biomimetic Structures
4.1. Photolithography
4.2. Nanoimprinting
4.3. Femtosecond Laser Processing
4.4. 3D Printing
5. Summary and Outlook
- (1)
- It is necessary to consider the synergistic effect of multiple structures on the biological surface. For example, the fish control the external flow field using the streamlined body, scales and flexible fins. It is partial to analyze one of the fish structures. In addition, combining the biomimetic structures with the existing traditional enhanced heat transfer structures is also worthy of further researches.
- (2)
- It seems that the simplified biomimetic structures show good performance as well as actual biomimetic structures. The heat transfer enhancement and drag reduction mechanism is a guide for simplifying biomimetic structures reasonably.
- (3)
- The structural parameters of the biomimetic structure are the most important factors. We are a long way from establishing the functional relationship between the structural parameters and heat transfer coefficient or flow resistance of biomimetic structures for performance evaluation.
- (4)
- The surface force is the dominant instead of volume force on fluid flow for micro heat sinks. The biomimetic structures are applied in microchannel, which is a major challenge to research micro heat transfer.
- (5)
- The composite biomimetic micro-nano structure is the main developing trend. It requires higher precision and quality of micro-nano machining technology. It is worth exploring the present machining methods used in combinations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Symbol Description
α | Fractal channel aspect ratio |
p | Interspace of conical column structure |
d | Tip size of conical column structure |
h | Height of conical column structure |
Dw | Departure diameter of droplet |
ρw | Density of droplet |
s+ | Dimensionless spacing of groove |
h+ | Dimensionless height of groove |
a+ | Dimensionless amplitude of sinusoidal groove |
λ+ | Dimensionless wavelength of sinusoidal groove |
dc | Depth of concave structure |
s | Spacing of concave structure |
CAD | Computer aided design |
SEM | Scanning electron microscope |
UV | Ultraviolet |
PDMS | Polydimethylsiloxane |
MTEOS | Methyltriethoxysilane |
PMMA | Polymethyl methacrylate |
SMP | Shape-memory polymer |
References
- Zhu, L.; Raman, A.; Wang, K.X.; Abou Anoma, M.; Fan, S. Radiative cooling of solar cells. Optica 2014, 1, 32–38. [Google Scholar] [CrossRef]
- Karayiannts, T.G.; Mahmoud, M.M. Flow boiling in microchannels: Fundamentals and applications. Appl. Therm. Eng. 2017, 115, 1372–1397. [Google Scholar] [CrossRef]
- Kadam, S.T.; Kumar, R. Twenty first century cooling solution: Microchannel heat sinks. Int. J. Therm. Sci. 2014, 85, 73–92. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Xie, G.; Sunden, B. Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions. Energy 2015, 75, 1–19. [Google Scholar] [CrossRef]
- Liu, J.; Xie, G.; Simon, T.W. Turbulent flow and heat transfer enhancement in rectangular channels with cylindrical grooves. Int. J. Heat Mass Transf. 2015, 81, 563–577. [Google Scholar] [CrossRef]
- Kelly, B.; Hayashi, Y.; Kim, Y.J. Novel radial pulsating heat-pipe for high heat-flux thermal spreading. Int. J. Heat Mass Transf. 2018, 121, 97–106. [Google Scholar] [CrossRef]
- Xie, G.; Liu, J.; Ligrani, P.M.; Sunden, B. Flow structure and heat transfer in a square passage with offset mid-truncated ribs. Int. J. Heat Mass Transf. 2014, 71, 44–56. [Google Scholar] [CrossRef]
- Tan, N.; Xing, Z.; Wang, H.; Wang, X.; Jin, G.; Xu, B. Research progress on geometric texturing and function based on bionic theory. J. Mater. Eng. 2018, 46, 133–140. [Google Scholar]
- Yu, C.; Sasic, S.; Liu, K.; Salameh, S.; Ras, R.H.; van Ommen, J.R. Nature-inspired self-cleaning surfaces: Mechanisms, modelling, and manufacturing. Chem. Eng. Res. Des. 2020, 155, 48–65. [Google Scholar] [CrossRef]
- Sun, J.; Bhushan, B. Nanomanufacturing of bioinspired surfaces. Tribol. Int. 2019, 129, 67–74. [Google Scholar] [CrossRef]
- Huang, Z.; Hwang, Y.; Radermacher, R. Review of nature-inspired heat exchanger technology. Int. J. Refrig. 2017, 78, 1–17. [Google Scholar] [CrossRef]
- Ni, X.; Ma, C.; Sun, J.; Zhang, Y.; Yu, Q. A leakage model of contact mechanical seals based on the fractal theory of porous medium. Coatings 2021, 11, 20. [Google Scholar] [CrossRef]
- Ma, F.; Zeng, Z.; Gao, Y.; Liu, E.; Xue, J. Research status and progress of bionic surface drag reduction. China Surf. Eng. 2016, 29, 7–15. [Google Scholar]
- Lin, W.; Cao, J.; Fang, X.; Zhang, Z. Research progress of heat transfer enhancement of shell-and-tube heat exchanger. Chem. Ind. Eng. Prog. 2018, 37, 1276–1286. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Times Books: New York, NY, USA, 1982. [Google Scholar]
- Chen, Y.; Deng, Z. Gas flow in micro tree-shaped hierarchical network. Int. J. Heat Mass Transf. 2015, 80, 163–169. [Google Scholar] [CrossRef]
- Xia, C.; Fu, J.; Lai, J.; Yao, X.; Chen, Z. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl. Therm. Eng. 2015, 90, 1032–1042. [Google Scholar] [CrossRef]
- Pence, D. Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks. Microscale Thermophys. Eng. 2002, 6, 319–330. [Google Scholar] [CrossRef]
- Zhang, C.; Lian, Y.; Hsu, C.H.; Teng, J.; Liu, S.; Chang, Y.; Greif, R. Investigations of thermal and flow behavior of bifurcations and bends in fractal-like microchannel networks: Secondary flow and recirculation flow. Int. J. Heat Mass Transf. 2015, 85, 723–731. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.; Hu, X.; Yang, L. Characteristics of heat transfer and fluid flow in a fractal multilayer silicon microchannel. Int. Commun. Heat Mass Transf. 2016, 71, 86–95. [Google Scholar] [CrossRef]
- Huang, P.; Dong, G.; Zhong, X.; Pan, M. Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section. Chem. Eng. Process. Process Intensif. 2020, 147, 107769. [Google Scholar] [CrossRef]
- Wang, G.; Gu, Y.; Zhao, L.; Xuan, J.; Zeng, G.; Tang, Z.; Sun, Y. Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing. Chem. Eng. Sci. 2019, 195, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Gürel, B.; Akkaya, V.R.; Göltaş, M.; Şen, Ç.N.; Gueler, O.V.; Koşar, M.İ.; Keçebaş, A. Investigation on flow and heat transfer of compact brazed plate heat exchanger with lung pattern. Appl. Therm. Eng. 2020, 175, 115309. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, J.; Yu, X.; Zhang, Y. Superamphiphobic coatings with polymer-wrapped particles: Enhancing water harvesting. J. Mater. Chem. A 2019, 7, 5426–5433. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, J.; Yu, X.; Liang, C.; Zhang, Y. Water harvesting method via a hybrid superwettable coating with superhydrophobic and superhydrophilic nanoparticles. Appl. Surf. Sci. 2019, 465, 986–994. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, F.; Lu, Y.; Zhang, Z.; Liu, J.; Chen, Y.; Liu, X.; Yang, X.; Carmalt, C.J.; Parkin, I.P. Superhydrophilic-superhydrophobic patterned surfaces on glass substrate for water harvesting. J. Mater. Sci. 2020, 55, 498–508. [Google Scholar] [CrossRef]
- Kim, N.K.; Kang, D.H.; Eom, H.; Kang, H.W. Biomimetic fog harvesting surface by photo-induced micro-patterning of zinc-oxide silver hierarchical nanostructures. Appl. Surf. Sci. 2019, 470, 161–167. [Google Scholar]
- Wang, X.; Zhang, Y.; Yu, X. Research progress and application status of biomimetic hybrid wetting surfaces. Surf. Technol. 2020, 49, 93–115. [Google Scholar]
- Ito, F.; Komatsubara, S.; Shigezawa, N.; Morikawa, H.; Murakami, Y.; Yoshino, K.; Yamanaka, S. Mechanics of water collection in plants via morphology change of conical hairs. Appl. Phys. Lett. 2015, 106, 13370113. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Z.; Liu, W. Biomimetic water-collecting materials inspired by nature. Chem. Commun. 2016, 52, 3863–3879. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Du, H.; Wang, H.; Wang, L.; Cong, Z.; Wu, H. Research and application status on biomimetic materials in the water harvesting area. J. Mater. Eng. 2020, 48, 10–18. [Google Scholar]
- Zhou, W.; Chen, L.; Du, J.; Tan, L.; Dong, L.; Zhou, C. Bio-inspired fog harvesting materials: From fundamental research to promotional strategy. J. Chem. Ind. Eng. 2020, 71, 4532–4552. [Google Scholar]
- Li, X.; Yang, Y.; Liu, L.; Chen, Y.; Chu, M.; Sun, H.; Shan, W.; Chen, Y. 3D-printed cactus-inspired spine structures for highly efficient water collection. Adv. Mater. Interfaces 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Ju, J.; Bai, H.; Zheng, Y.; Zhao, T.; Fang, R.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, J.; Zheng, Y.; Jiang, L. Bioinspired one-dimensional materials for directional liquid transport. Acc. Chem. Res. 2014, 47, 2342–2352. [Google Scholar] [CrossRef]
- Xing, H.; Cheng, J.; Zhou, C.; Zheng, Y.; Wang, G.; Wen, X.; Pi, P.; Xu, S. Fog collection on a conical copper wire: Effect of fog flow velocity and surface morphology. Micro Nano Lett. 2018, 13, 1068–1070. [Google Scholar] [CrossRef]
- Koch, K.; Blecher, I.C.; König, G.; Kehraus, S.; Barthlott, W. The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): A biological model for spreading of water and oil on surfaces. Funct. Plant Biol. 2009, 36, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Ji, X.; Zhou, R.; You, T.; Xu, J. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface. J. Zhejiang Univ. Eng. Sci. 2020, 54, 1022–1028. [Google Scholar]
- Li, H.; Ji, X.; Xu, J. Investigation on the performance of bionic wick flat heat pipes. J. Aerosp. Power 2017, 32, 2403–2409. [Google Scholar]
- Xie, H.; Huang, H.; Peng, Y. Rapid fabrication of bio-inspired nanostructure with hydrophobicity and antireflectivity on polystyrene surface replicating from cicada wings. Nanoscale 2017, 9, 11951–11958. [Google Scholar] [CrossRef]
- Xie, H.; Huang, H.; Mi, H. Gradient wetting state for droplet transportation and efficient fog harvest on nanopillared cicada wing surface. Mater. Lett. 2018, 221, 123–127. [Google Scholar] [CrossRef]
- Watson, G.S.; Green, D.W.; Sun, M.; Liang, A.; Xin, L.; Cribb, B.W.; Watson, J.A. The insect (cicada) wing membrane micro/nano structure-nature’s templates for control of optics, wetting, adhesion, contamination, bacteria and eukaryotic cells. J. Nanosci. Adv. Technol. 2015, 1, 1–11. [Google Scholar] [CrossRef]
- Wang, K.; Liang, Q.; Jiang, R.; Zheng, Y.; Bai, T.; Lan, Z.; Ma, X. Mechanism of droplet jumping enhancement by raised structures on superhydrophobic surfaces. J. Chem. Eng. Chin. Univ. 2017, 31, 663–668. [Google Scholar]
- Wang, F.; Liang, C.; Zhang, Y.; Zhang, X. Jumping of condensation droplets on superhydrophobic surfaces at early frosting stage and its effects on frost formation. J. Southeast Univ. Nat. Sci. Ed. 2016, 46, 757–762. [Google Scholar]
- Shi, Y.; Tang, G.; Xia, H. Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins. Int. J. Heat Mass Transf. 2015, 88, 445–455. [Google Scholar] [CrossRef]
- Chu, F.; Wu, X.; Zhu, Y. Theoretical model for multidroplet coalescence induced droplet jumping on superhydrophobic surfaces. J. Eng. Thermophys. 2017, 38, 352–357. [Google Scholar]
- Wang, R.; Zhu, J.; Meng, K.; Wang, H.; Deng, T.; Gao, X.; Jiang, L. Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer. Adv. Funct. Mater. 2018, 28, 1800634. [Google Scholar] [CrossRef]
- Cho, H.J.; Preston, D.J.; Zhu, Y.; Wang, E.N. Nanoengineered materials for liquid-vapor phase-change heat transfer. Nat. Rev. Mater. 2016, 2, 16092. [Google Scholar] [CrossRef]
- Alwazzan, M.; Egab, K.; Peng, B.; Khan, J.; Li, C. Condensation on hybrid-patterned copper tubes(Ⅰ): Characterization of condensation heat transfer. Int. J. Heat Mass Transf. 2017, 112, 991–1004. [Google Scholar] [CrossRef]
- Alwazzan, M.; Egab, K.; Peng, B.; Khan, J.; Li, C. Condensation on hybrid-patterned copper tubes(Ⅱ): Characterization of condensation heat transfer. Int. J. Heat Mass Transf. 2017, 112, 950–958. [Google Scholar] [CrossRef]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Z.; He, J. Atomistic dewetting mechanics of Wenzel and monostable Cassie-Baxter states. Phys. Chem. Chem. Phys. 2018, 20, 24759–24767. [Google Scholar] [CrossRef] [Green Version]
- Xing, D.; Wu, F.; Wang, R.; Zhu, J.; Gao, X. Microdrop-assisted microdomain hydrophilicization of superhydrophobic surfaces for high-efficiency nucleation and self-removal of condersate microdrops. ACS Appl. Mater. Interfaces 2019, 11, 7553–7558. [Google Scholar] [CrossRef]
- Parker, A.R.; Lawrence, C.R. Water capture by a desertbeetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef]
- Xing, D.; Wu, F.; Wang, R.; Zhu, J.; Gao, X. Research progress in bio-inspired interface materials for condensation heat transfer. Mater. China 2018, 37, 1002–1009. [Google Scholar]
- Hou, Y.; Yu, M.; Chen, X.; Wang, Z.; Yao, S. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano 2015, 9, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.S.; Lin, K.H.; Tu, C.W.; He, Y.Z.; Wang, C.C. Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces. Int. J. Heat Mass Transf. 2017, 115, 1032–1041. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, Y.; Hu, H.; Yu, X.; Xu, J. Flow condensation heat transfer on surfaces with different wettability in mini-channel. J. Chem. Ind. Eng. 2018, 69, 4156–4166. [Google Scholar]
- Yuan, J.; Wang, Y.; Xu, J.; Ji, X.; Xie, J. Convective dropwise condensation heat transfer in mini-channels with biphilic surface. Int. J. Heat Mass Transf. 2019, 134, 69–84. [Google Scholar] [CrossRef]
- Choo, S.; Choi, H.J.; Lee, H. Water-collecting behavior of nanostructured surfaces with special wettability. Appl. Surf. Sci. 2015, 324, 563–568. [Google Scholar] [CrossRef]
- Zhu, D.; Xu, X.; Liu, J.; Lu, J. Characteristic of condensation heat transfer of hybrid wettability surfaces. J. Chem. Ind. Eng. 2020. [Google Scholar] [CrossRef]
- Mahapatra, P.S.; Ghosh, A.; Ganguly, R.; Megaridis, C.M. Key design and operating parameters for enhancing dropwise condensation through wettability patterning. Int. J. Heat Mass Transf. 2016, 92, 877–883. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Z.; Feng, Y.; Zhang, X. Vapor condensation on hybrid superhydrophilic/superhydrophobic surfaces. J. Eng. Thermophys. 2021, 42, 475–480. [Google Scholar]
- Lin, Y.T.; Ting, Y.S.; Chen, B.Y.; Cheng, Y.W.; Liu, T.Y. Bionic shark skin replica and zwitterionic polymer brushes functionalized PDMS membrane for anti-fouling and wound dressing applications. Surf. Coat. Technol. 2020, 391, 125663. [Google Scholar] [CrossRef]
- Yu, C.; Liu, M.; Zhang, C.; Yan, H.; Zhang, M.; Wu, Q.; Liu, M.; Jiang, L. Bio-inspired drag reduction: From nature organisms to artificial functional. Giant 2020, 2, 100017. [Google Scholar] [CrossRef]
- Liu, G.; Yuan, Z.; Qiu, Z.; Feng, S.; Xie, Y.; Leng, D.; Tian, X. A brief review of bio-inspired surface technology and application toward underwater drag reduction. Ocean Eng. 2020, 199, 106962. [Google Scholar] [CrossRef]
- Luo, Y.; Song, W.; Wang, X. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research. Micron 2016, 82, 9–16. [Google Scholar] [CrossRef]
- Mo, M.; Zhao, W.; Chen, Z.; Zeng, Z.; Wu, X.; Xue, Q. Research status of marine drag reduction technologies. Tribology 2015, 35, 505–515. [Google Scholar]
- Wei, X.; Shen, H.; Chen, W. Review on the research of bio-hydrodynamics. J. Ship Mech. 2020, 24, 962–970. [Google Scholar]
- Heidarian, A.; Ghassemi, H.; Liu, P. Numerical analysis of the effects of riblets on drag reduction of a flat plate. J. Appl. Fluid Mech. 2018, 11, 679–688. [Google Scholar] [CrossRef]
- Benschop, H.O.G.; Breugem, W.P. Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow. J. Turbul. 2017, 18, 717–759. [Google Scholar] [CrossRef]
- Ibrahim, M.D.; Amran, S.N.A.; Yunos, Y.S.; Rahman, M.R.A.; Mohtar, M.Z.; Wong, L.K.; Zulkharnain, A. The study of drag reduction on ships inspired by simplified shark skin imitation. Appl. Bionics Biomech. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bai, Q.; Bai, J.; Meng, X.; Ji, C.; Liang, Y. Drag reduction characteristics and flow field analysis of textured surface. Friction 2016, 4, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; Bhushan, B. Modeling and optimization of shark-inspired riblet geometries for low drag applications. J. Colloid Interface Sci. 2016, 474, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Žemaitis, A.; Mikšys, J.; Gaidys, M.; Gečys, P.; Gedvilas, M. High-efficiency laser fabrication of drag reducing riblet surfaces on preheated Teflon. Mater. Res. Express 2019. [Google Scholar] [CrossRef]
- Sasamori, M.; Iihama, O.; Mamori, H.; Iwamoto, K.; Murata, A. Parametric study on a sinusoidal riblet for drag reduction by direct numerical simulation. Flow Turbul. Combust. 2017, 99, 1–23. [Google Scholar] [CrossRef]
- Chen, H.; Che, D.; Zhang, X.; Zhang, D. UV grafting process for synthetic drag reduction of biomimetic riblet surfaces. J. Appl. Polym. Sci. 2015, 132, 42303. [Google Scholar] [CrossRef]
- Wei, J.J.; Huang, C.H.; Yu, B. Study of collaborative drag-reducing effect of surfactant solution and longitudinal microgroove channel. J. Chem. Ind. Eng. 2018, 69, 472–482. [Google Scholar]
- Huang, C.H.; Wei, J.J.; Wei, W.; Wang, W.; Xiao, Q. Experimental study on the collaborative drag reduction of surfactant and longitudinal microgrooves. J. Xi’an Jiaotong Univ. 2019, 53, 150–156. [Google Scholar]
- Liu, P.; Wang, J.W.; Zhu, D.J. Hierarchical structure and mechanical properties of scales from grass carp. Acta Mater. Compos. Sin. 2016, 33, 657–665. [Google Scholar]
- Dey, P.; Hedau, G.; Saha, S.K. Experimental and numerical investigations of fluid flow and heat transfer in a bioinspired surface enriched microchannel. Int. J. Therm. Sci. 2019, 135, 44–60. [Google Scholar] [CrossRef]
- Wu, L.; Jiao, Z.; Song, Y.; Ren, W.; Niu, S.; Han, Z. Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations. Sci. China 2017, 60, 1111–1117. [Google Scholar] [CrossRef]
- Yan, G.; Tian, P.; Mo, J.; Xie, H.; Wei, H. Low-velocity resistance distortion and bionic drag reduction for ship-type paddy field machinery. Int. J. Agric. Biol. Eng. 2020, 13, 7–14. [Google Scholar] [CrossRef]
- Ren, L.; Deng, S.; Wang, J.; Han, Z. Design principles of the non-smooth surface of bionic plow moldboard. J. Bionics Eng. 2004, 1, 9–19. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, Q.; Wood, R.J.; Wu, J.; Wang, S. Influence of bionic non-smooth surface texture on tribological characteristics of carbon-fiber-reinforced polyetheretherketone under seawater lubrication. Tribol. Int. 2020, 144, 106100. [Google Scholar] [CrossRef]
- Guo, C.Y.; Cao, X.X.; Zhang, H.P.; Jiang, H. Prediction and analysis of acoustic performance of bionic propellers. J. Ship Mech. 2020, 24, 1224–1232. [Google Scholar]
- Song, X.W.; Lin, P.Z.; Liu, R.; Zhou, P. Skin friction reduction characteristics of variable ovoid non-smooth surfaces. J. Zhejiang Univ. Sci. A 2017, 18, 59–66. [Google Scholar] [CrossRef]
- Wang, X.; Xin, G.; Tian, F.; Qu, F.; Cheng, L. Research progress of heat transfer enhancement and surface drag reduction techniques based on bionics. Chem. Ind. Eng. Prog. 2020. [Google Scholar] [CrossRef]
- Spalart, P.R.; Shur, M.; Strelets, M.; Paschal, K.B.; Wilkinson, S.P. Experimental and numerical study of the turbulent boundary layer over shallow dimples. Int. J. Heat Fluid Flow 2019, 78, 108438. [Google Scholar] [CrossRef]
- Ma, C.; Sun, J.; Wang, Y.; Yu, B.; Yu, Q.; Tu, Q. On the optimum dimple depth-over-diameter ratio for textured surfaces. Adv. Mech. Eng. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Zhang, Y.; Zhao, H.R.; Wu, P.B.; Shao, X.F. Drag reduction technology of high-speed train based on boundary layer control. J. Traffic Transp. Eng. 2017, 17, 64–72. [Google Scholar]
- Li, T.; Dai, Z.Y.; Liu, J.L.; Wu, N.; Zhang, W.H. Review on aerodynamic drag reduction optimization of high-speed trains in China. J. Traffic Transp. Eng. 2021, 21, 59–80. [Google Scholar]
- Li, T.; Qin, D.; Li, M.; Zhang, J. Aerodynamic drag reduction of a high-speed train nose with bionic pits. Comput. Sci. Eng. 2019, 21, 31–41. [Google Scholar] [CrossRef]
- Palanivendhan, M.; Chandradass, J.; Saravanan, C.; Philip, J.; Sharan, R. Reduction in aerodynamic drag acting on a commercial vehicle by using a dimpled surface. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, D.; Liu, Z. Optimization and design method for a rough rear surface on the notchback MIRA model. J. Automob. Eng. 2017, 232, 1297–1309. [Google Scholar] [CrossRef]
- Xu, M.; Lu, H.; Gong, L.; Chai, J.C.; Duan, X. Parametric numerical study of the flow and heat transfer in microchannel with dimples. Int. Commun. Heat Mass Transf. 2016, 76, 348–357. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yang, W.; Ming, T.; Shen, W.; Yu, X. Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples. Int. J. Heat Mass Transf. 2017, 112, 113–124. [Google Scholar] [CrossRef]
- Jing, Q.; Zhang, D.; Xie, Y. Numerical investigations of impingement cooling performance on flat and non-flat targets with dimple/protrusion and triangular rib. Int. J. Heat Mass Transf. 2018, 126, 169–190. [Google Scholar] [CrossRef]
- Jing, Q.; Xie, Y.; Zhang, D. Numerical investigation on the flow and heat transfer in swirl chambers with distributed multi exit slots and dimple/protrusion structure. Int. Commun. Heat Mass Transf. 2020, 119, 104923. [Google Scholar] [CrossRef]
- Domel, A.G.; Saadat, M.; Weaver, J.; Haj-Hariri, H.; Bertoldi, K.; Lauder, G.V. Shark skin-inspired designs that improve aerodynamic performance. J. R. Soc. Interface 2018, 15, 20170828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Yang, F.; Fu, J.; Guo, Z. A bio-design of superhydrophobic nano-coating from ZnO and studies of its green photoluminescence inspired by Lotus leaf. Chem. Lett. 2018, 47, 872–874. [Google Scholar] [CrossRef]
- Li, G.B.; Liu, H.F.; Li, J.H.; Zeng, H.; Li, R.; Li, G.S.; Jin, J.C. Progress in research of preparation of superhydrophobic. Polym. Mater. Sci. Eng. 2021. [Google Scholar] [CrossRef]
- Yunqing, G.; Tao, L.; Jiegang, M.; Zhengzan, S.; Peijian, Z. Analysis of drag reduction methods and mechanisms of turbulent. Appl. Bionics Biomech. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norouzi, N.; Gharehaghaji, A.A.; Montazer, M. Reducing drag force on polyester fabric through superhydrophobic surface via nano-pretreatment and water repellent finishing. J. Text. Inst. 2017, 6, 116–126. [Google Scholar] [CrossRef]
- Weng, R.; Zhang, H.; Yin, L.; Rong, W.; Wu, Z.; Liu, X. Fabrication of superhydrophobic surface by oxidation growth of flower-like nanostructure on a steel foil. Rsc. Adv. 2017, 7, 25341–25346. [Google Scholar] [CrossRef] [Green Version]
- Tuo, Y.; Chen, W.; Zhang, H.; Li, P.; Liu, X. One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil. Appl. Surf. Sci. 2018, 446, 230–235. [Google Scholar] [CrossRef]
- Li, L.; Zhu, J.; Zhi, S.; Liu, E.; Wang, G.; Zeng, Z.; Zhao, W.; Xue, Q. Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum. Phys. Fluids 2018, 30, 071903. [Google Scholar] [CrossRef]
- Rajappan, A.; Golovin, K.; Tobelmann, B.; Pillutla, V.; Abhijeet; Choi, W.; Anish, T.; McKinley, G.H. Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow. Phys. Fluids 2019, 31, 042107. [Google Scholar] [CrossRef] [Green Version]
- Hwang, G.B.; Patir, A.; Page, K.; Lu, Y.; Allan, E.; Parkin, I.P. Buoyancy increase and drag-reduction through a simple superhydrophobic coating. Nanoscale 2017, 9, 7588–7595. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Tian, Y.; Zhang, H.; Wang, R.; Zhang, B.; Zhang, H.; Zhang, Q. Robust organic-inorganic composite films with multifunctional properties of superhydrophobicity, self-healing and drag reduction. Ind. Eng. Chem. Res. 2019, 58, 4468–4478. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jiang, L.; Yu, B.; Ma, C.B. Research progress on surface adhesion regulation under dry environment. Tribology 2021, 6, 1–25. [Google Scholar]
- Zhan, D.; Han, L.; Zhang, J.; He, Q.; Tian, Z.W.; Tian, Z.Q. Electrochemical micro/nano-machining: Principles and practices. Chem. Soc. Rev. 2017, 46, 1526–1544. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Zhang, P.; Zhang, D.; Han, Z.; Jiang, L. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of nepenthes alata. Small 2017, 13, 1601676. [Google Scholar] [CrossRef]
- Moazzam, P.; Tavassoli, H.; Razmjou, A.; Warkiani, M.E.; Asadnia, M. Mist harvesting using bioinspired polydopamine coating and microfabrication technology. Desalination 2018, 429, 111–118. [Google Scholar] [CrossRef]
- Li, T.; Paliy, M.; Wang, X.; Kobe, B.; Lau, W.M.; Yang, J. A facile one-step photolithographic method for engineering hierarchically nano/microstructured transparent superamphiphobic surfaces. ACS Appl. Mater. Interfaces 2015, 7, 10988–10992. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Guo, Z.; Liu, W. Biomimetic superoleophobic surfaces: Focusing on their fabrication and applications. J. Mater. Chem. A 2015, 3, 1811–1827. [Google Scholar] [CrossRef]
- Chen, J.G.; Liu, L.J.; Zhao, Z.X.; Liu, J.R. Research and development of nanoimprint lithography technology. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Schwyz, Switzerland, 2015. [Google Scholar]
- Kim, S.; Jung, U.T.; Kim, S.K.; Lee, J.H.; Choi, H.S.; Kim, C.S.; Jeong, M.Y. Nanostructured multifunctional surface with antireflective and antimicrobial characteristics. ACS Appl. Mater. Interfaces 2015, 7, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Saison, T.; Peroz, C.; Chauveau, V.; Berthier, S.; Sondergard, E.; Arribart, H. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films. Bioinspir. Biomim. 2008, 3, 046004. [Google Scholar] [CrossRef]
- Dickson, M.N.; Liang, E.I.; Rodriguez, L.A.; Vollereaux, N.; Yee, A.F. Nanopatterned polymer surfaces with bactericidal properties. Biointerphases 2015, 10, 021010. [Google Scholar] [CrossRef] [Green Version]
- Si, S.; Hoffmann, M. Consecutive imprinting performance of large area UV nanoimprint lithography using Bi-layer soft stamps in ambient atmosphere. Microelectronic 2017, 176, 62–70. [Google Scholar] [CrossRef]
- Lou, T.; Bai, X.Q.; Yuan, C.Q.; Yang, Z.C. Advances in surface microstructure antifouling technology for ship hull. Surf. Technol. 2019, 48, 102–113. [Google Scholar]
- Ren, F.; Li, G.; Zhang, Z.; Zhang, X.; Fan, H.; Zhou, C.; Wang, Y.; Zhang, Y.; Wang, C.; Mu, K.; et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection. J. Mater. Chem. A 2017, 5, 18403–18408. [Google Scholar] [CrossRef]
- Wang, J.N.; Liu, Y.Q.; Zhang, Y.L.; Feng, J.; Wang, H.; Yu, Y.H.; Sun, H.B. Wearable superhydrophobic elastomer skin with switchable wettability. Adv. Funct. Mater. 2018, 28, 1800625. [Google Scholar] [CrossRef]
- Yong, J.; Chen, F.; Li, M.; Yang, Q.; Fang, Y.; Huo, J.; Hou, X. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. J. Mater. Chem. A 2017, 5, 25249–25257. [Google Scholar] [CrossRef] [Green Version]
- Haitao, J.I.A.N.G.; Jianlei, C.U.I.; Dongping, Y.I.N.; Xuesong, M.E.I. Femtosecond laser processing technology of diamond micro-channnel heat sink based on radar power module. China Mech. Eng. 2021, 32, 261–268. [Google Scholar]
- Yong, J.; Chen, F.; Fang, Y.; Huo, J.; Yang, Q.; Zhang, J.; Bian, H.; Hou, X. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles. ACS Appl. Mater. Interfaces 2017, 9, 39863–39871. [Google Scholar] [CrossRef]
- Bai, X.; Yang, Q.; Fang, Y.; Zhang, J.; Yong, J.; Hou, X.; Chen, F. Superhydrophobicity-memory surfaces prepared by a femtosecond laser. Chem. Eng. J. 2020, 383, 123143. [Google Scholar] [CrossRef]
- Lin, Y.; Han, J.; Cai, M.; Liu, W.; Luo, X.; Zhang, H.; Zhong, M. Durable and robust transparent superhydrophobic glass surfaces fabricated by femtosecond laser with exceptional water repellency and thermostability. J. Mater. Chem. A 2018, 6. [Google Scholar] [CrossRef]
- Xiao, Q.; Xu, R. Research progress in surface micro-nano of materials prepared by ultrafast laser. China Surf. Eng. 2020, 33, 1–17. [Google Scholar]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; He, H.; Peng, X.; Huang, B.; Li, J. Three-dimensional printing of poly (lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polym. Adv. Technol. 2019, 30, 910–922. [Google Scholar] [CrossRef]
- Tian, X.; Zhou, K. 3D printing of cellular materials for advanced electrochemical energy storage and conversion. Nanoscale 2020, 12, 7416–7432. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Weaver, J.C.; Lauder, G.V. Biomimetic shark skin: Design, fabrication and hydrodynamic function. J. Exp. Biol. 2014, 217, 1656–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Li, X.; Zheng, X.; Chen, Z.; Zhou, Q.; Chen, Y. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv. Mater. 2018, 30, 1704912. [Google Scholar] [CrossRef]
- Zhou, X.; Hou, Y.; Lin, J. A review on the processing accuracy of two-photon polymerization. AIP Adv. 2015, 5, 928–934. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Yasir Akram, M.; Ali, S.; Nie, J.; Zhu, X. Decomposable PVA-based super-hydrophobic 3D porous material for effective water/oil separation. Langmuir 2018, 34, 4535–4547. [Google Scholar] [CrossRef] [PubMed]
Reference | Research Method | Dimension | Medium | Factor | Maximum Heat Transfer Enhancement Rate | Application |
---|---|---|---|---|---|---|
[19] | simulation | microscale | deionized water | channel aspect ratio (α = 0.3–1) | 20% | microchannel heat sink |
[20] | simulation experiment | microscale | deionized water | structure layer (0–5) | 110% | microchannel heat sink |
[21] | simulation | microscale | deionized water | structure shape (smooth; ribbed; concave) | 17% | microchannel heat sink |
[22] | simulation experiment | conventional scale | deionized water | structure shape (Y-type; H-type; conventional spiral) | 23% | spiral-tube heat exchanger |
[23] | simulation | conventional scale | deionized water | structure shape (lung patterned; corrugated) | 71.3% | plate heat exchanger |
Reference | Research Method | Hybrid Wetting Structure | Contact Angle | Factor | Maximum Heat Transfer Enhancement Rate |
---|---|---|---|---|---|
[56] | experiment | hydrophilic: 24.6° hydrophobic: 167.1° | wettability (hydrophilic; hydrophobic; hybrid wetting) | 63% | |
[57] | experiment | hydrophilic: 73° hydrophobic: 125° | wettability (hydrophilic; hydrophobic; superhydrophilic; hybrid wetting) | 9% | |
[58,59] | experiment | hydrophilic: 22.6° hydrophobic: 135° | wettability (hydrophilic; hydrophobic; hybrid wetting) | 107.3% | |
[60] | experiment | hydrophilic: 0° hydrophobic: 161° | surface inclined angle (0°–90°) superhydrophilic pattern shape (dot; mesh; line; branch) | 50% | |
[61] | experiment | hydrophilic: 86.4° hydrophobic: 151.2° | hydrophilic parallel-stripes pattern inclined angle (60°; 90°) | 114% | |
[62] | experiment | hydrophilic: 78.2° hydrophobic: 161.2° | superhydrophilic tracks fractional area (0–50%) superhydrophilic tracks spatial layout (interdigitated; staggered) | 35.9% | |
[63] | experiment | hydrophilic: 0° hydrophobic: 158° | superhydrophilic region width (0.8 mm; 1.33 mm; 2.07 mm) | 39% |
Reference | Research Method | Groove | Medium | Factor | Maximum Drag Reduction Rate |
---|---|---|---|---|---|
[73] | simulation | deionized water | groove shape (V-shaped; saw tooth; rectangular; semi-circular) | 30% | |
[74] | simulation | deionized water | groove shape (blade; sawtooth; scalloped) dimensionless spacing (s+ = 0–50) dimensionless height (h+ = 0–15) | 13% | |
[75] | experiment | air | dimensionless spacing (s+ = 7–35) | 6% | |
[76] | simulation | air | dimensionless amplitude (a+ = 0–18.47) dimensionless wavelength (λ+ = 107.9–431.6) | 9.8% | |
[77] | experiment | deionized water | drag reduction agent (polyacrylamide) | 14% |
Reference | Research Method | Medium | Factor | Maximum Drag Reduction Rate | Application |
---|---|---|---|---|---|
[91] | simulation | air | ball socket radius (20–180 mm) ball socket depth (4–16 mm) ball socket array distance (100–500 mm) | 25.19% | high-speed train |
[94] | simulation | air | dimple size and number | 4% | commercial vehicle |
[95] | experiment | air | structure location (top; luggage hatch; rear; bottom) structure shape (pitted; convex; grooved) | 2.26% | notchback |
[96] | simulation | deionized water | concave structure depth (d = 0.05–0.2 mm) concave structure spacing (s = 0.7–2.8 mm) | 2% | microchannel heat sink |
[97] | simulation | deionized water | structure shape (convex; concave; mixed) | 9% | microchannel heat sink |
[98,99] | simulation | deionized water | structure location (nozzle side; slot side) | 5% | swirl chamber |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Li, J.; Peng, H.; Liu, D. Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction. Micromachines 2021, 12, 656. https://doi.org/10.3390/mi12060656
Zhu Z, Li J, Peng H, Liu D. Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction. Micromachines. 2021; 12(6):656. https://doi.org/10.3390/mi12060656
Chicago/Turabian StyleZhu, Zhangyu, Juan Li, Hao Peng, and Dongren Liu. 2021. "Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction" Micromachines 12, no. 6: 656. https://doi.org/10.3390/mi12060656
APA StyleZhu, Z., Li, J., Peng, H., & Liu, D. (2021). Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction. Micromachines, 12(6), 656. https://doi.org/10.3390/mi12060656