Numerical Evaluation on Residual Thermal Stress-Induced Delamination at PDMS–Metal Interface of Neural Prostheses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Specimen Fabrication
2.2. Shrinkage Measurement Experiment
2.3. Modified Thermal Shrinkage Model for Correlation
2.4. Finite Element Method (FEM) Simulations
- Creation of the finite element model and perform the thermal simulation.
- Definition of the boundary and contact constraints and thermal simulation results as inputs for mechanical simulation.
- Post-processing and evaluation of the simulation results.
3. Results and Discussions
3.1. PDMS Lateral Shrinkage
3.2. Validation of the Shrinkage Measurement Results
3.3. Simulated In-Plane Residual Stress Distribution in PDMS-Metal Interface
3.4. Estimation of Delamination Driven by Residual Stress
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMID | Active Implantable Medical Devices |
ECoG | electrocorticography |
PDMS | polydimethylsiloxane |
CI | cochlear implant |
CTE | coefficients of thermal expansion |
FEM | finite element method |
APDL | ANSYS Parametric Design Language |
References
- Ordonez, J.; Schuettler, M.; Boehler, C.; Boretius, T.; Stieglitz, T. Thin films and microelectrode arrays for neuroprosthetics. MRS Bull. 2012, 37, 590–598. [Google Scholar] [CrossRef] [Green Version]
- Durisin, M.; Krause, C.; Arnoldner, C.; Kontorinis, G.; Buechner, A.; Lenarz, T.; Lesinki-Schiedat, A.; Profant, O.; Neuburger, J. Electron microscopy changes of cochlear implant electrodes with permanently high impedances. Cochlear Implants Int. 2011, 12, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Wissel, K.; Brandes, G.; Pütz, N.; Angrisani, G.L.; Thieleke, J.; Lenarz, T.; Durisin, M. Platinum corrosion products from electrode contacts of human cochlear implants induce cell death in cell culture models. PLoS ONE 2018, 13, e0196649. [Google Scholar] [CrossRef] [PubMed]
- Čvančara, P.; Boretius, T.; López-Álvarez, V.M.; Maciejasz, P.; Andreu, D.; Raspopovic, S.; Petrini, F.; Micera, S.; Granata, G.; Fernandez, E.; et al. Stability of flexible thin-film metallization stimulation electrodes: Analysis of explants after first-in-human study and improvement of in vivo performance. J. Neural Eng. 2020, 17, 046006. [Google Scholar] [CrossRef] [PubMed]
- Schuettler, M.; Stieglitz, T. Assembly and Packaging. In Implantable Sensor Systems for Medical Applications; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–510. ISBN 9781845699871. [Google Scholar]
- Ordonez, J.S.; Ieee, M.; Boehler, C.; Schuettler, M.; Ieee, M.; Stieglitz, T.; Ieee, S.M. Improved Polyimide Thin-Film Electrodes for Neural Implants. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 5134–5137. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Liao, Y.C. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment. ACS Appl. Mater. Interfaces 2016, 8, 11868–11874. [Google Scholar] [CrossRef] [PubMed]
- Schuettler, M.; Henle, C.; Ordonez, J.; Suaning, G.J.; Lovell, N.H.; Stieglitz, T. Patterning of silicone rubber for micro-electrode array fabrication. In Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–5 May 2007; pp. 53–56. [Google Scholar] [CrossRef]
- Hsu, Y.Y.; Gonzalez, M.; Bossuyt, F.; Axisa, F.; Vanfleteren, J.; De Wolf, I. In situ observations on deformation behavior and stretching induced failure of fine pitch stretchable interconnect. J. Mater. Res. 2009, 24, 3573–3582. [Google Scholar] [CrossRef] [Green Version]
- Rebscher, S.J.; Hetherington, A.M.; Snyder, R.L.; Leake, P.A.; Bonham, B.H. Design and fabrication of multichannel cochlear implants for animal research. J. Neurosci. Methods 2007, 166, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.W.; Lee, S.S. Shrinkage ratio of PDMS and its alignment method for the wafer level process. Microsyst. Technol. 2008, 14, 205–208. [Google Scholar] [CrossRef]
- Müller, A.; Wapler, M.C.; Wallrabe, U. A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter 2019, 15, 779–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, I.D.; McCluskey, D.K.; Tan, C.K.L.; Tracey, M.C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 7. [Google Scholar] [CrossRef]
- Dow Chemical Technical Data Sheet SYLGARDTM 184 Silicone Elastomer. Available online: https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf?iframe=true (accessed on 15 March 2021).
- Wong, E.J. Modeling and Control of Rapid Cure in Polydimethylsiloxane (PDMS) for Microfluidic Device Applications. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Schneider, F.; Fellner, T.; Wilde, J.; Wallrabe, U. Mechanical properties of silicones for MEMS. J. Micromech. Microeng. 2008, 18, 65008. [Google Scholar] [CrossRef]
- Wu, H.; Odom, T.W.; Chiu, D.T.; Whitesides, G.M. Fabrication of complex three-dimensional microchannel systems in PDMS. J. Am. Chem. Soc. 2003, 125, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Jeong, O.C.; Konishi, S. Controlling the size of replicable polydimethylsiloxane (PDMS) molds/stamps using a stepwise thermal shrinkage process. In Proceedings of the Microelectronic Engineering; Elsevier: Amsterdam, The Netherlands, 2011; Volume 88, pp. 2286–2289. [Google Scholar]
- Freund, L.B.; Suresh, S. Thin Film Materials Stress, Defect Formation and Surface Evolution; Cambridge University Press: Cambridge, UK, 2004; ISBN 9780511165658. [Google Scholar]
- Creton, C.; Kramer, E.J.; Hui, C.Y.; Brown, H.R. Failure Mechanisms of Polymer Interfaces Reinforced with Block Copolymers. Macromolecules 1992, 25, 3075–3088. [Google Scholar] [CrossRef]
- Creton, C.; Hooker, J.; Shull, K.R. Bulk and interfacial contributions to the debonding mechanisms of soft adhesives: Extension to large strains. Langmuir 2001, 17, 4948–4954. [Google Scholar] [CrossRef]
Curing Temperature (°C) | 25 | 40 | 60 | 80 | 100 | 120 |
---|---|---|---|---|---|---|
Curing protocol by FEM simulation (min) | 833 | 510 | 180 | 150 | 120 | 105 |
Sylgard 184 data sheet (min) | 2880 | - | - | - | 35 | 25 |
Mueller et al. [12] | - | 360 | - | - | - | 18 |
Property | Copper | PDMS Sylgard 184 | ||||
---|---|---|---|---|---|---|
22 °C | 60 °C | 80 °C | 100 °C | 120 °C | ||
) | 8942 | 982 * | ||||
) | 385 | 1100 * | ||||
) | 401 | 0.27 * | ||||
Poisson’s ratio | 0.345 | 0.495 * | ||||
16.74 | 337.50 | 312.70 | 298.53 | 284.36 | 270.19 | |
) | 1.320 | 1.577 | 1.770 | 1.962 | 2.155 |
Shrinkage Types | 22 °C (mm) | 60 °C (mm) | 80 °C (mm) | 100 °C (mm) | 120 °C (mm) |
---|---|---|---|---|---|
0.187 ± 0.034 | 0.267 ± 0.047 | 0.356 ± 0.051 | 0.284 ± 0.115 | 0.408 ± 0.059 | |
0.289 ± 0.012 | 0.299 ± 0.023 | 0.299 ± 0.023 | 0.333 ± 0.028 | 0.394 ± 0.013 | |
0.265 ± 0.045 | 0.589 ± 0.036 | 0.922 ± 0.022 | 1.057 ± 0.063 | 1.183 ± 0.021 | |
0.296 ± 0.008 | 0.682 ± 0.026 | 0.962 ± 0.049 | 1.120 ± 0.027 | 1.417 ± 0.027 | |
0.261 ± 0.058 | 0.704 ± 0.030 | 0.905 ± 0.020 | 1.123 ± 0.030 | 1.323 ± 0.030 | |
0.293 ± 0.012 | 0.724 ± 0.038 | 1.099 ± 0.021 | 1.235 ± 0.034 | 1.472 ± 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Pechenizkiy, I.; Stieglitz, T.; Doll, T. Numerical Evaluation on Residual Thermal Stress-Induced Delamination at PDMS–Metal Interface of Neural Prostheses. Micromachines 2021, 12, 669. https://doi.org/10.3390/mi12060669
Mao Y, Pechenizkiy I, Stieglitz T, Doll T. Numerical Evaluation on Residual Thermal Stress-Induced Delamination at PDMS–Metal Interface of Neural Prostheses. Micromachines. 2021; 12(6):669. https://doi.org/10.3390/mi12060669
Chicago/Turabian StyleMao, Yuyang, Ivan Pechenizkiy, Thomas Stieglitz, and Theodor Doll. 2021. "Numerical Evaluation on Residual Thermal Stress-Induced Delamination at PDMS–Metal Interface of Neural Prostheses" Micromachines 12, no. 6: 669. https://doi.org/10.3390/mi12060669
APA StyleMao, Y., Pechenizkiy, I., Stieglitz, T., & Doll, T. (2021). Numerical Evaluation on Residual Thermal Stress-Induced Delamination at PDMS–Metal Interface of Neural Prostheses. Micromachines, 12(6), 669. https://doi.org/10.3390/mi12060669