An Investigation of the Cutting Strategy for the Machining of Polar Microstructures Used in Ultra-Precision Machining Optical Precision Measurement
Abstract
:1. Introduction
2. Feature Point Distribution Analysis in the Field of View (FOV)
2.1. Determination of the FOV
2.2. The Vital Parameters Influencing Feature Point Distribution in the FOV
3. Modeling of Surface Generation for Polar Microstructures
4. Feature Point Detection
5. Results and Discussion
5.1. Effect of Tool Geometry
5.2. Effect of Depth of Cut
5.3. Groove Spacing
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chen, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement technologies for precision positioning. CIRP Ann. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Sun, B.; Zheng, G.; Zhang, X. Application of contact laser interferometry in precise displacement measurement. Measurement 2021, 174, 108959. [Google Scholar] [CrossRef]
- Mohith, S.; Upadhya, A.R.; Navin, K.P.; Kul Ka Rni, S.M.; Rao, M. Recent trends in piezoelectric actuators for precision motion and their applications: A review. Smart Mater. Struct. 2020, 30, 013002. [Google Scholar] [CrossRef]
- Andre, A.N.; Sandoz, P.; Mauze, B.; Jacquot, M.; Laurent, G.J. Sensing One Nanometer over Ten Centimeters: A Micro-Encoded Target for Visual In-Plane Position Measurement. IEEE/ASME Trans Mechatron. 2020, 25, 1193–1201. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Zahedpour, S.; Wahlstrand, J.; Milchberg, H. Measurement of the nonlinear refractive index of air constituents at mid-infrared wavelengths. Opt. Lett. 2015, 40, 5794–5797. [Google Scholar] [CrossRef]
- Yao, S.; Li, H.; Pang, S.; Zhu, B.; Fatikow, S. A Review of Computer Microvision-Based Precision Motion Measurement: Principles, Characteristics, and Applications. IEEE Trans. Instrum. Meas. 2021, 70. [Google Scholar] [CrossRef]
- Gonzalez-Galvan, E.J.; Skaar, S.B.; Korde, U.A.; Chen, W. Application of a precision-enhancing measure in 3D rigid-body positioning using camera-space manipulation. Int. J. Robot. Res. 1997, 16, 240–257. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, F.; Xue, T. Monocular-vision-based method for online measurement of pose parameters of weld stud. Measurement 2015, 61, 263–269. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Wu, H.; Gan, J. Line-based calibration of a micro-vision motion measurement system. Opt. Lasers Eng. 2017, 93, 40–46. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Cheung, C.F.; Liu, M.Y. Integrated polar microstructure and template-matching method for optical position measurement. Opt. Express 2018, 26, 4330–4345. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Cheung, C.F.; Liu, M.Y. Nanoscale measurement with pattern recognition of an ultra-precision diamond machined polar microstructure. Precis. Eng. 2019, 56, 156–163. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Cheung, C.F.; Xu, P. Optical nanoscale positioning measurement with a feature-based method. Opt. Lasers Eng. 2020, 134, 106225. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Cheung, C.F.; Liu, M.Y. Modeling and simulation of a machining process chain for the precision manufacture of polar microstructure. Micromachines 2017, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.B.; Cheung, C.F. Design, fabrication and measurement of ultra-precision micro-structured freeform surfaces. Comput. Ind. Eng. 2011, 61, 216–225. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, S.; Zhou, M.; Yang, Y. Fast tool servo control for diamond-cutting microstructured optical components. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 1226–1229. [Google Scholar] [CrossRef]
- Neo, D.W.K.; Kumar, A.S.; Rahman, M. A novel surface analytical model for cutting linearization error in fast tool/slow slide servo diamond turning. Precis. Eng. 2014, 38, 849–860. [Google Scholar] [CrossRef]
- Wang, J.; Du, H.; Gao, S.; Yang, Y.; Guo, P. An ultrafast 2-D non-resonant cutting tool for texturing micro-structured surfaces. J. Manuf. Process. 2019, 48, 97. [Google Scholar] [CrossRef]
- Strasburger, H.; Rentschler, I.; Jüttner, M. Peripheral vision and pattern recognition: A review. J. Vis. 2011, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, A.; Li, K.; Li, J.; Liang, H.; Conteduca, D.; Borges, B.-H.V.; Krauss, T.F.; Martins, E.R. On metalenses with arbitrarily wide field of view. ACS Photonics 2020, 7, 2073–2079. [Google Scholar] [CrossRef]
- Panescu, D.; Jones, D.H.; Allenby, C. Quantitative Three-Dimensional Visualization of Instruments in a Field of View. U.S. Patent Application US 15/300,258, 22 June 2017. [Google Scholar]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Polakowski, W.E.; Cournoyer, D.A.; Rogers, S.K.; DeSimio, M.P.; Ruck, D.W.; Hoffmeister, J.W.; Raines, R.A. Computer-aided breast cancer detection and diagnosis of masses using difference of Gaussians and derivative-based feature saliency. IEEE Trans. Med. Imaging 1997, 16, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhang, W.; Mortensen, E.; Dietterich, T.; Shapiro, L. Principal curvature-based region detector for object recognition. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
Machining straight grooves (SPDG) | Feed rate of grooving straight grooves (mm/min) | 800 |
DOC: um | 5 | |
(μm) | 10 | |
(μm) | 50 | |
Number of straight grooves: | 250 | |
Machining round grooves (SPDT) | DOC: um | 5 |
(μm) | 50 | |
Number of round grooves: | 250 | |
The radius of the smallest round groove | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.-Y.; Cheung, C.F.; Fu, W.-P. An Investigation of the Cutting Strategy for the Machining of Polar Microstructures Used in Ultra-Precision Machining Optical Precision Measurement. Micromachines 2021, 12, 755. https://doi.org/10.3390/mi12070755
Zhao C-Y, Cheung CF, Fu W-P. An Investigation of the Cutting Strategy for the Machining of Polar Microstructures Used in Ultra-Precision Machining Optical Precision Measurement. Micromachines. 2021; 12(7):755. https://doi.org/10.3390/mi12070755
Chicago/Turabian StyleZhao, Chen-Yang, Chi Fai Cheung, and Wen-Peng Fu. 2021. "An Investigation of the Cutting Strategy for the Machining of Polar Microstructures Used in Ultra-Precision Machining Optical Precision Measurement" Micromachines 12, no. 7: 755. https://doi.org/10.3390/mi12070755
APA StyleZhao, C. -Y., Cheung, C. F., & Fu, W. -P. (2021). An Investigation of the Cutting Strategy for the Machining of Polar Microstructures Used in Ultra-Precision Machining Optical Precision Measurement. Micromachines, 12(7), 755. https://doi.org/10.3390/mi12070755