Biocompatibility of SU-8 and Its Biomedical Device Applications
Abstract
:1. Introduction
2. Biocompatibility
2.1. In Vitro Studies
2.2. In Vivo Studies
3. Surface Modification
4. Applications
4.1. 3D Structures for In Vitro Studies
4.2. Biosensing
4.3. Functional Devices for In Vivo Applications
4.3.1. SU-8 Based Microneedles
4.3.2. SU-8 Neural Probes
4.3.3. SU-8-Based Wireless Implantable Devices
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lorenz, H.; Despont, M.; Fahrni, N.; Brugger, J.; Vettiger, P.; Renaud, P. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sens. Actuators A Phys. 1998, 64, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, H.; Despont, M.; Vettiger, P.; Renaud, P. Fabrication of Photoplastic High-Aspect Ratio Microparts and Micromolds Using SU-8 UV Resist. Microsyst. Technol. 1998, 4, 143–146. [Google Scholar] [CrossRef]
- Bogdanov, A.; Peredkov, S. Use of SU-8 photoresist for very high aspect ratio x-ray lithography. Microelectron. Eng. 2000, 53, 493–496. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lee, G.-B.; Chang, B.-W.; Chang, G.-L. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J. Micromechan. Microeng. 2002, 12, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Matsumura, H.; Keino, S.; Shoji, S. An all SU-8 microfluidic chip with built-in 3D fine microstructures. J. Micromechan. Microeng. 2006, 16, 2318–2322. [Google Scholar] [CrossRef]
- Kim, D.; Lee, D.-W.; Choi, W.; Lee, J.-B. A Super-lyophobic 3-D PDMS channel as a novel microfluidic platform to manipulate oxidized galinstan. J. Microelectromechan. Syst. 2013, 22, 1267–1275. [Google Scholar] [CrossRef]
- Jiang, L.; Gerhardt, K.P.; Myer, B.; Zohar, Y.; Pau, S. Evanescent-wave spectroscopy using an SU-8 waveguide for rapid quantitative detection of biomolecules. J. Microelectromechan. Syst. 2008, 17, 1495–1500. [Google Scholar] [CrossRef]
- Hopcroft, M.; Kramer, T.; Kim, G.; Takashima, K.; Higo, Y.; Moore, D.; Brugger, J. Micromechanical testing of SU-8 cantilevers. Fatigue Fract. Eng. Mater. Struct. 2005, 28, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Xue, N.; Chang, S.-P.; Lee, J.-B. A SU-8-Based microfabricated implantable inductively coupled passive RF wireless intraocular pressure sensor. J. Microelectromechan. Syst. 2012, 21, 1338–1346. [Google Scholar] [CrossRef]
- Martinez, V.; Behr, P.; Drechsler, U.; Polesel, J.; Potthoff, E.; Voros, J.; Zambelli, T. SU-8 hollow cantilevers for AFM cell adhesion studies. J. Micromechan. Microeng. 2016, 26, 055006. [Google Scholar] [CrossRef]
- Huang, S.-H.; Lin, S.-P.; Chen, J.-J.J. In vitro and in vivo characterization of SU-8 flexible neuroprobe: From mechanical properties to electrophysiological recording. Sens. Actuators A Phys. 2014, 216, 257–265. [Google Scholar] [CrossRef]
- Sanza, F.; Holgado, M.; Ortega, F.; Casquel, R.; López-Romero, D.; Bañuls, M.; Laguna, M.; Barrios, C.A.; Puchades, R.; Maquieira, A. Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing. Biosens. Bioelectron. 2011, 26, 4842–4847. [Google Scholar] [CrossRef]
- Tao, S.L.; Popat, K.C.; Norman, A.J.J.; Desai, T.A. Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties. Langmuir 2008, 24, 2631–2636. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef]
- Grayson, A.; Shawgo, R.; Johnson, A.; Flynn, N.; Li, Y.; Cima, M.; Langer, R. A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 2004, 92, 6–21. [Google Scholar] [CrossRef]
- Hassler, C.; Boretius, T.; Stieglitz, T. Polymers for neural implants. J. Polym. Sci. Part. B Polym. Phys. 2011, 49, 18–33. [Google Scholar] [CrossRef]
- Vernekar, V.N.; Cullen, D.K.; Fogleman, N.; Choi, Y.; García, A.J.; Allen, M.G.; Brewer, G.J.; LaPlaca, M.C. SU-8 2000 rendered cytocompatible for neuronal bioMEMS applications. J. Biomed. Mater. Res. Part. A 2008, 89, 138–151. [Google Scholar] [CrossRef]
- Marelli, M.; Divitini, G.; Collini, C.; Ravagnan, L.; Corbelli, G.; Ghisleri, C.; Gianfelice, A.; Lenardi, C.; Milani, P.; Lorenzelli, L. Flexible and biocompatible microelectrode arrays fabricated by supersonic cluster beam deposition on SU-8. J. Micromech. Microeng. 2011, 21, 45013. [Google Scholar] [CrossRef] [Green Version]
- Weisenberg, B.A.; Mooradian, D.L. Hemocompatibility of materials used in microelectromechanical systems: Platelet adhesion and morphology in vitro. J. Biomed. Mater. Res. 2002, 60, 283–291. [Google Scholar] [CrossRef]
- Wang, Y.; Bachman, M.; Sims, C.E.; Li, G.P.; Allbritton, N.L. Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist. Langmuir 2006, 22, 2719–2725. [Google Scholar] [CrossRef]
- Ereifej, E.S.; Khan, S.; Newaz, G.; Zhang, J.; Auner, G.W.; VandeVord, P.J. Characterization of astrocyte reactivity and gene expression on biomaterials for neural electrodes. J. Biomed. Mater. Res. Part A 2011, 99, 141–150. [Google Scholar] [CrossRef]
- Walther, F.; Davydovskaya, P.; Zürcher, S.; Kaiser, M.; Herberg, H.; Gigler, A.M.; Stark, R.W. Stability of the hydrophilic behavior of oxygen plasma activated SU-8. J. Micromechan. Microeng. 2007, 17, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Kotzar, G.; Freas, M.; Abel, P.; Fleischman, A.; Roy, S.; Zorman, C.; Moran, J.M.; Melzak, J. Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 2002, 23, 2737–2750. [Google Scholar] [CrossRef]
- Ajetunmobi, A.; McAllister, D.; Jain, N.; Brazil, O.; Corvin, A.; Volkov, Y.; Tropea, D.; Prina-Mello, A. Characterization of SH-SY5Y human neuroblastoma cell growth over glass and SU-8 substrates. J. Biomed. Mater. Res. Part. A 2017, 105, 2129–2138. [Google Scholar] [CrossRef]
- Nemani, K.V.; Moodie, K.L.; Brennick, J.B.; Su, A.; Gimi, B. In vitro and in vivo evaluation of SU-8 biocompatibility. Mater. Sci. Eng. C 2013, 33, 4453–4459. [Google Scholar] [CrossRef] [Green Version]
- Mitri, E.; Birarda, G.; Vaccari, L.; Kenig, S.; Tormen, M.; Grenci, G. SU-8 bonding protocol for the fabrication of microfluidic devices dedicated to FTIR microspectroscopy of live cells. Lab. Chip. 2014, 14, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Hennemeyer, M.; Walther, F.; Kerstan, S.; Schürzinger, K.; Gigler, A.M.; Stark, R.W. Cell proliferation assays on plasma activated SU-8. Microelectron. Eng. 2008, 85, 1298–1301. [Google Scholar] [CrossRef]
- Voskerician, G.; Shive, M.S.; Shawgo, R.S.; von Recum, H.; Anderson, J.M.; Cima, M.J.; Langer, R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 2003, 24, 1959–1967. [Google Scholar] [CrossRef]
- Cho, S.-H.; Lu, H.M.; Cauller, L.; Romero-Ortega, M.; Lee, J.-B.; Hughes, G.A. Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers. IEEE Sens. J. 2008, 8, 1830–1836. [Google Scholar] [CrossRef]
- Márton, G.; Tóth, E.Z.; Wittner, L.; Fiáth, R.; Pinke, D.; Orbán, G.; Meszéna, D.; Pál, I.; Győri, E.L.; Bereczki, Z.; et al. The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study. Mater. Sci. Eng. C 2020, 112, 110870. [Google Scholar] [CrossRef] [PubMed]
- Walther, F.; Drobek, T.; Gigler, A.M.; Hennemeyer, M.; Kaiser, M.; Herberg, H.; Shimitsu, T.; Morfill, G.E.; Stark, R.W. Surface hydrophilization of SU-8 by plasma and wet chemical processes. Surf. Interface Anal. 2010, 42, 1735–1744. [Google Scholar] [CrossRef]
- Eravuchira, P.J.; Baranowska, M.; Eckstein, C.; Díaz, F.; Llobet, E.; Marsal, L.F.; Ferré-Borrull, J. Immunosensing by luminescence reduction in surface-modified microstructured SU-8. Appl. Surf. Sci. 2017, 392, 883–888. [Google Scholar] [CrossRef]
- Delplanque, A.; Henry, E.; Lautru, J.; Leh, H.; Buckle, M.; Nogues, C. UV/ozone surface treatment increases hydrophilicity and enhances functionality of SU-8 photoresist polymer. Appl. Surf. Sci. 2014, 314, 280–285. [Google Scholar] [CrossRef]
- Patterson, T.J.; Ngo, M.; Aronov, P.A.; Reznikova, T.V.; Green, P.G.; Rice, R.H. Biological activity of inorganic arsenic and antimony reflects oxidation state in cultured human keratinocytes. Chem. Res. Toxicol. 2003, 16, 1624–1631. [Google Scholar] [CrossRef]
- Wang, Y.; Sims, C.E.; Marc, P.; Bachman, M.; Li, G.P.; Allbritton, N.L. Micropatterning of living cells on a heterogeneously wetted surface. Langmuir 2006, 22, 8257–8262. [Google Scholar] [CrossRef]
- Salazar, G.T.; Wang, Y.; Young, G.; Bachman, M.; Sims, C.E.; Li, G.P.; Allbritton, N.L. Micropallet arrays for the separation of single, adherent cells. Anal. Chem. 2007, 79, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Hamid, Q.; Wang, C.; Snyder, J.; Sun, W. Surface modification of SU-8 for enhanced cell attachment and proliferation within microfluidic chips. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2014, 103, 473–484. [Google Scholar] [CrossRef]
- Joshi, M.; Kale, N.; Lal, R.; Rao, V.R.; Mukherji, S. A novel dry method for surface modification of SU-8 for immobilization of biomolecules in Bio-MEMS. Biosens. Bioelectron. 2007, 22, 2429–2435. [Google Scholar] [CrossRef]
- Nordström, M.; Marie, R.; Calleja, M.; Boisen, A. Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication. J. Micromech. Microeng. 2004, 14, 1614–1617. [Google Scholar] [CrossRef]
- Stangegaard, M.; Wang, Z.; Kutter, J.P.; Dufva, M.; Wolff, A. Whole genome expression profiling using DNA microarray for determining biocompatibility of polymeric surfaces. Mol. BioSyst. 2006, 2, 421–428. [Google Scholar] [CrossRef]
- Marie, R.; Schmid, S.; Johansson, A.; Ejsing, L.; Nordström, M.; Häfliger, D.; Christensen, C.B.; Boisen, A.; Dufva, M. Immobilisation of DNA to polymerised SU-8 photoresist. Biosens. Bioelectron. 2006, 21, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pai, J.-H.; Lai, H.-H.; Sims, C.E.; Bachman, M.; Li, G.P.; Allbritton, N.L. Surface graft polymerization of SU-8 for bio-MEMS applications. J. Micromechan. Microeng. 2007, 17, 1371–1380. [Google Scholar] [CrossRef]
- Sobiesierski, A.; Thomas, R.; Buckle, P.; Barrow, D.; Smowton, P.M. A two-stage surface treatment for the long-term stability of hydrophilic SU-8. Surf. Interface Anal. 2015, 47, 1174–1179. [Google Scholar] [CrossRef] [Green Version]
- Anbumani, S.; da Silva, A.M.; Roggero, U.F.; Silva, A.M.; Hernández-Figueroa, H.E.; Cotta, M.A. Oxygen plasma-enhanced covalent biomolecule immobilization on SU-8 thin films: A stable and homogenous surface biofunctionalization strategy. Appl. Surf. Sci. 2021, 553, 149502. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, L.; Zhu, Y.; Su, W.; Xu, C.; Tao, T.; Shi, Y.; Qin, J. Assessment of hepatic metabolism-dependent nephrotoxicity on an organs-on-a-chip microdevice. Toxicol. Vitr. 2018, 46, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Huh, D.; Kim, H.J.; Fraser, J.P.; Shea, D.E.; Khan, M.; Bahinski, A.; Hamilton, G.A.; Ingber, D.E. Microfabrication of human organs-on-chips. Nat. Protoc. 2013, 8, 2135–2157. [Google Scholar] [CrossRef]
- Fenech, M.; Girod, V.; Claveria, V.; Meance, S.; Abkarian, M.; Charlot, B. Microfluidic blood vasculature replicas using backside lithography. Lab Chip 2019, 19, 2096–2106. [Google Scholar] [CrossRef]
- Choi, Y.; Powers, R.; Vernekar, V.; Frazier, A.B.; LaPlaca, M.C.; Allen, M.G. High aspect ratio SU-8 structures for 3-D culturing of neurons. Heat Transf. 2003, 2003, 651–654. [Google Scholar] [CrossRef]
- Wu, Z.-Z.; Zhao, Y.; Kisaalita, W.S. Interfacing SH-SY5Y human neuroblastoma cells with SU-8 microstructures. Colloids Surf. B Biointerfaces 2006, 52, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Yoo, S.-J.; Moon, C.; Nelson, B.J.; Choi, H. SU-8-based nanoporous substrate for migration of neuronal cells. Microelectron. Eng. 2015, 141, 173–177. [Google Scholar] [CrossRef]
- Gimi, B.; Kwon, J.; Liu, L.; Su, Y.; Nemani, K.V.; Trivedi, K.; Cui, Y.; Vachha, B.; Mason, R.; Hu, W.; et al. Cell encapsulation and oxygenation in nanoporous microcontainers. Biomed. Microdevices 2009, 11, 1205–1212. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.; Trivedi, K.; Krishnamurthy, N.V.; Hu, W.; Lee, J.-B.; Gimi, B. SU-8-based immunoisolative microcontainer with nanoslots defined by nanoimprint lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2009, 27, 2795–2800. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, I.A.; Testa, G.; Persichetti, G.; Loffredo, F.; Villani, F.; Bernini, R. Plasma functionalization procedure for antibody immobilization for SU-8 based sensor. Biosens. Bioelectron. 2016, 86, 827–833. [Google Scholar] [CrossRef]
- Blagoi, G.; Keller, S.S.; Johansson, A.; Boisen, A.; Dufva, M. Functionalization of SU-8 photoresist surfaces with IgG proteins. Appl. Surf. Sci. 2008, 255, 2896–2902. [Google Scholar] [CrossRef]
- Calleja, M.; Tamayo, J.; Nordström, M.; Boisen, A. Low-noise polymeric nanomechanical biosensors. Appl. Phys. Lett. 2006, 88, 113901. [Google Scholar] [CrossRef] [Green Version]
- Holgado, M.; Barrios, C.A.; Ortega, F.; Sanza, F.; Casquel, R.; Laguna, M.; Bañuls, M.-J.; López-Romero, D.; Puchades, R.; Maquieira, A. Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars. Biosens. Bioelectron. 2010, 25, 2553–2558. [Google Scholar] [CrossRef]
- Shew, B.; Cheng, Y.; Tsai, Y. Monolithic SU-8 micro-interferometer for biochemical detections. Sens. Actuators A Phys. 2008, 141, 299–306. [Google Scholar] [CrossRef]
- Wang, P.-C.; Paik, S.-J.; Chen, S.; Rajaraman, S.; Kim, S.-H.; Allen, M.G. Fabrication and characterization of polymer hollow microneedle array using UV lithography into micromolds. J. Microelectromechan. Syst. 2013, 22, 1041–1053. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.-B. High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Microsyst. Technol. 2006, 13, 231–235. [Google Scholar] [CrossRef]
- Soltanzadeh, R.; Afsharipour, E.; Shafai, C.; Anssari, N.; Mansouri, B.; Moussavi, Z. Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation. Biomed. Microdevices 2018, 20, 1. [Google Scholar] [CrossRef]
- Chaudhri, B.P.; Ceyssens, F.; de Moor, P.; Van Hoof, C.; Puers, R. A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. J. Micromechan. Microeng. 2010, 20, 64006. [Google Scholar] [CrossRef]
- Xiang, Z.; Wang, H.; Pant, A.; Pastorin, G.; Lee, C. Development of vertical SU-8 microneedles for transdermal drug delivery by double drawing lithography technology. Biomicrofluidics 2013, 7, 066501. [Google Scholar] [CrossRef] [Green Version]
- Ajay, A.P.; DasGupta, A.; Chatterjee, D. Fabrication of monolithic su-8 microneedle arrays having different needle geometries using a simplified process. Int. J. Adv. Manuf. Technol. 2021, 114, 3615–3626. [Google Scholar]
- Lee, K.; Lee, H.C.; Lee, D.-S.; Jung, H. Drawing lithography: Three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 2010, 22, 483–486. [Google Scholar] [CrossRef]
- Mishra, R.; Pramanick, B.; Maiti, T.K.; Bhattacharyya, T.K. Glassy carbon microneedles—new transdermal drug delivery device derived from a scalable C-MEMS process. Microsystems Nanoeng. 2018, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polikov, V.S.; Tresco, P.A.; Reichert, W.M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 2005, 148, 1–18. [Google Scholar] [CrossRef]
- Vetter, R.J.; Williams, J.C.; Hetke, J.F.; Nunamaker, E.A.; Kipke, D.R. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans. Biomed. Eng. 2004, 51, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Matarèse, B.F.; Feyen, P.L.C.; Falco, A.; Benfenati, F.; Lugli, P.; Demello, J.C. Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes. Sci. Rep. 2018, 8, 5560. [Google Scholar] [CrossRef] [Green Version]
- Marchoubeh, M.L.; Cobb, S.J.; Tello, M.A.; Hu, M.; Jaquins-Gerstl, A.; Robbins, E.M.; Macpherson, J.V.; Michael, A.C.; Fritsch, I. Miniaturized probe on polymer SU-8 with array of individually addressable microelectrodes for electrochemical analysis in neural and other biological tissues. Anal. Bioanal. Chem. 2021, 1–15. [Google Scholar] [CrossRef]
- Vasudevan, S.; Kajtez, J.; Heiskanen, A.; Emneus, J.; Keller, S.S. Leaky Opto-electrical neural probe for optical stimulation and electrochemical detection of dopamine exocytosis. In Proceedings of the 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 388–391. [Google Scholar]
- Altuna, A.; de la Prida, L.M.; Bellistri, E.; Gabriel, G.; Guimerà, A.; Berganzo, J.; Villa, R.; Fernández, L.J. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens. Bioelectron. 2012, 37, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, L.J.; Altuna, A.; Tijero, M.; Gabriel, G.; Villa, R.; Rodríguez, M.J.; Batlle, M.; Vilares, R.; Berganzo, J.; Blanco, F.J. Study of functional viability of SU-8-based microneedles for neural applications. J. Micromechan. Microeng. 2009, 19, 25007. [Google Scholar] [CrossRef]
- Yeh, C.-C.; Lo, S.-H.; Xu, M.-X.; Yang, Y.-J. Fabrication of a flexible wireless pressure sensor for intravascular blood pressure monitoring. Microelectron. Eng. 2019, 213, 55–61. [Google Scholar] [CrossRef]
- Khan, M.W.; Sydanheimo, L.; Ukkonen, L.; Björninen, T. Inductively powered pressure sensing system integrating a far-field data transmitter for monitoring of intracranial pressure. IEEE Sensors J. 2017, 17, 2191–2197. [Google Scholar] [CrossRef]
- Cho, S.-H.; Xue, N.; Cauller, L.; Rosellini, W.; Lee, J.-B. A SU-8-Based fully integrated biocompatible inductively powered wireless neurostimulator. J. Microelectromechan. Syst. 2013, 22, 170–176. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Lee, J.-B. Biocompatibility of SU-8 and Its Biomedical Device Applications. Micromachines 2021, 12, 794. https://doi.org/10.3390/mi12070794
Chen Z, Lee J-B. Biocompatibility of SU-8 and Its Biomedical Device Applications. Micromachines. 2021; 12(7):794. https://doi.org/10.3390/mi12070794
Chicago/Turabian StyleChen, Ziyu, and Jeong-Bong Lee. 2021. "Biocompatibility of SU-8 and Its Biomedical Device Applications" Micromachines 12, no. 7: 794. https://doi.org/10.3390/mi12070794
APA StyleChen, Z., & Lee, J. -B. (2021). Biocompatibility of SU-8 and Its Biomedical Device Applications. Micromachines, 12(7), 794. https://doi.org/10.3390/mi12070794