Towards Fully Integrated Portable Sensing Devices for COVID-19 and Future Global Hazards: Recent Advances, Challenges, and Prospects
Abstract
:1. Introduction
2. Protein-Based Tests for COVID-19 Detection
- Sensitivity (A/(A + C) × 100) is the probability of indicating COVID-19 among the infected cases
- Specificity (D/(D + B) × 100) is defined as the fraction of people who are not infected by SARS-CoV-2 and have a negative test result.
- PPA(A/(A + B) × 100) is the probability of achieving a true positive result.
- NPA(D/(D + C) × 100) is the probability of achieving a negative positive result.
- Cross-reaction is defined as the reaction of a specific antigen with specific antibodies which are developed to target another antigen.
- LoD is the lowest number of biomarker copies that can be detected by a method.
2.1. Antigen Testing
2.2. Antibody Testing
3. Biorecognition Elements
3.1. Antibody
3.2. Antigen
4. CMOS Sensors and Circuits
4.1. Optical Techniques
4.2. Electrochemical Sensors
4.2.1. Impedimetric Sensor
4.2.2. Capacitive Sensor
4.2.3. Other Electrochemical Sensors
4.3. Magnetic Sensor
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard; World Health Organization: Geneva, Switzerland, 2020; Available online: https://covid19.who.int/ (accessed on 19 April 2021).
- Khanmohammadi, S.; Rezaei, N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol. 2021, 93, 2735–2739. [Google Scholar] [CrossRef] [PubMed]
- Ganji, A.; Farahani, I.; Khansarinejad, B.; Ghazavi, A.; Mosayebi, G. Increased expression of CD8 marker on T-cells in COVID-19 patients. Blood Cells Mol. Dis. 2020, 83, 102437. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Emergency Use Authorization; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2020. [Google Scholar]
- Suleman, S.; Shukla, S.K.; Malhotra, N.; Bukkitgar, S.D.; Shetti, N.P.; Pilloton, R.; Narang, J.; Tan, Y.N.; Aminabhavi, T.M. Point of care detection of COVID-19: Advancement in biosensing and diagnostic methods. Chem. Eng. J. 2021, 414, 128759. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Augustine, S.; Narayan, T.; O’Riordan, A.; Das, A.; Kumar, D.; Luong, J.H.; Malhotra, B.D. Point-of-Care PCR Assays for COVID-19 Detection. Biosensors 2021, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, A.; Meurant, R.; Ardakani, A. COVID-19 point-of-care diagnostics that satisfy global target product profiles. Diagnostics 2021, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Tayyab, M.; Sami, M.A.; Raji, H.; Mushnoori, S.; Javanmard, M. Potential microfluidic devices for COVID-19 Antibody detection at Point-of-Care (POC): A Review. IEEE Sens. J. 2020, 21, 4007–4017. [Google Scholar] [CrossRef]
- Ashraf, G.; Aziz, A.; Qaisrani, R.N.; Chen, W.; Asif, M. Detecting and inactivating severe acute respiratory syndrome coronavirus-2 under the auspices of electrochemistry. Curr. Res. Chem. Biol. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Rasmi, Y.; Li, X.; Khan, J.; Ozer, T.; Choi, J.R. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: Current progress, challenges, and future prospects. Anal. Bioanal. Chem. 2021, 413, 4137–4159. [Google Scholar] [CrossRef]
- Rezaei, M.; Razavi Bazaz, S.; Zhand, S.; Sayyadi, N.; Jin, D.; Stewart, M.P.; Ebrahimi Warkiani, M. Point of Care Diagnostics in the Age of COVID-19. Diagnostics 2021, 11, 9. [Google Scholar]
- Iqbal, M.A.; Xu, Y.; Xiao, F.; Sun, Y. Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. Chem. Eng. J. 2021, 423, 130189. [Google Scholar]
- Aziz, A.; Asif, M.; Ashraf, G.; Farooq, U.; Yang, Q.; Wang, S. Trends in biosensing platforms for SARS-CoV-2 detection: A critical appraisal against standard detection tools. Curr. Opin. Colloid Interface Sci. 2021, 52, 101418. [Google Scholar] [CrossRef]
- Aziz, A.; Asif, M.; Ashraf, G.; Yang, Q.; Wang, S. COVID-19 impacts, diagnosis and possible therapeutic techniques: A comprehensive review. Curr. Pharm. Des. 2021, 27, 1170–1184. [Google Scholar] [CrossRef]
- Choi, J.R. Development of point-of-care biosensors for COVID-19. Front. Chem. 2020, 8, 517. [Google Scholar] [CrossRef]
- Zhai, P.; Ding, Y.; Wu, X.; Long, J.; Zhong, Y.; Li, Y. The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents 2020, 55, 105955. [Google Scholar] [CrossRef]
- World Health Organization. Laboratory Testing for Coronavirus Disease COVID-19 in Suspected Human Cases: Interim Guidance; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Zhang, J.; Gharizadeh, B.; Lu, D.; Yue, J.; Yu, M.; Liu, Y.; Zhou, M. Navigating the Pandemic Response Life Cycle: Molecular Diagnostics and Immunoassays in the Context of COVID-19 Management. IEEE Rev. Biomed. Eng. 2020, 14, 30–47. [Google Scholar] [CrossRef]
- Tang, Y.-W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory diagnosis of COVID-19: Current issues and challenges. J. Clin. Microbiol. 2020, 58, e00512–e00520. [Google Scholar] [CrossRef] [Green Version]
- Dramé, M.; Teguo, M.T.; Proye, E.; Hequet, F.; Hentzien, M.; Kanagaratnam, L.; Godaert, L. Should RT-PCR be considered a gold standard in the diagnosis of Covid-19? J. Med. Virol. 2020, 92, 2312–2313. [Google Scholar] [CrossRef]
- Asrani, P.; Eapen, M.S.; Chia, C.; Haug, G.; Weber, H.C.; Hassan, M.I.; Sohal, S.S. Diagnostic approaches in COVID-19: Clinical updates. Expert Rev. Respir. Med. 2021, 15, 197–212. [Google Scholar] [CrossRef]
- Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020, 3, 3225–3328. [Google Scholar] [CrossRef] [Green Version]
- Cellex qSARS-CoV-2 IgG/IgM Rapid Test. 2020. Available online: https://www.fda.gov/media/136625/download (accessed on 2 April 2021).
- Serology Test Evaluation Report for “GenBody COVID-19 IgM/IgG” from GenBody Inc. 2020. Available online: http://www.boditech.co.kr/eng/common/asp/download.asp?file=/board/NEWS/ichroma%E2%84%A2_COVID-19_Ab_(with_ichroma%E2%84%A2_II_Reader)_test_system.pdf&target=TB_BOARD_ALL&num=2883 (accessed on 8 September 2020).
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef]
- Couniot, N.; Francis, L.A.; Flandre, D. A 16 × 16 CMOS Capacitive Biosensor Array Towards Detection of Single Bacterial Cell. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 364–374. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Sun, A.; Zhao, Y.; Aronoff-Spencer, E.; Hall, D.A. A 16 × 20 electrochemical CMOS biosensor array with in-pixel averaging using polar modulation. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–4. [Google Scholar]
- Ghafar-Zadeh, E.; Sawan, M.; Chodavarapu, V.P.; Hosseini-Nia, T. Bacteria growth monitoring through a differential CMOS capacitive sensor. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 232–238. [Google Scholar] [CrossRef]
- Malpartida-Cardenas, K.; Miscourides, N.; Rodriguez-Manzano, J.; Yu, L.-S.; Moser, N.; Baum, J.; Georgiou, P. Quantitative and rapid Plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS Lab-on-Chip platform. Biosens. Bioelectron. 2019, 145, 111678. [Google Scholar] [CrossRef]
- Aytur, T.; Foley, J.; Anwar, M.; Boser, B.; Harris, E.; Beatty, P.R. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. J. Immunol. Methods 2006, 314, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Pai, A.; Khachaturian, A.; Chapman, S.; Hu, A.; Wang, H.; Hajimiri, A. A handheld magnetic sensing platform for antigen and nucleic acid detection. Analyst 2014, 139, 1403–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manickam, A.; Singh, R.; McDermott, M.W.; Wood, N.; Bolouki, S.; Naraghi-Arani, P.; Johnson, K.A.; Kuimelis, R.G.; Schoolnik, G.; Hassibi, A. A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing. IEEE J. Solid-State Circuits 2017, 52, 2857–2870. [Google Scholar] [CrossRef] [PubMed]
- Pilavaki, E.; Valente, V.; Demosthenous, A. CMOS Image Sensor for Lateral Flow Immunoassay Readers. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 1405–1409. [Google Scholar] [CrossRef]
- Baader, J.; Klapproth, H.; Bednar, S.; Brandstetter, T.; Rühe, J.; Lehmann, M.; Freund, I. Polysaccharide microarrays with a CMOS based signal detection unit. Biosens. Bioelectron. 2011, 26, 1839–1846. [Google Scholar] [CrossRef]
- Song, J.M.; Culha, M.; Kasili, P.M.; Griffin, G.D.; Vo-Dinh, T. A compact CMOS biochip immunosensor towards the detection of a single bacteria. Biosens. Bioelectron. 2005, 20, 2203–2209. [Google Scholar] [CrossRef]
- Noorimotlagh, Z.; Karami, C.; Mirzaee, S.A.; Kaffashian, M.; Mami, S.; Azizi, M. Immune and bioinformatics identification of T cell and B cell epitopes in the protein structure of SARS-CoV-2: A systematic review. Int. Immunopharmacol. 2020, 86, 106738. [Google Scholar] [CrossRef]
- Gan, S.D.; Patel, K.R. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Invest. Derm. 2013, 133, e12. [Google Scholar] [CrossRef] [Green Version]
- Nacher, M.; Mergeay-Fabre, M.; Blanchet, D.; Benoit, O.; Pozl, T.; Mesphoule, P.; Sainte-Rose, V.; Vialette, V.; Toulet, B.; Moua, A. Prospective comparison of saliva and nasopharyngeal swab sampling for mass screening for COVID-19. Front. Med. 2021, 8, 176. [Google Scholar] [CrossRef]
- Bahadır, E.B.; Sezgintürk, M.K. Lateral flow assays: Principles, designs and labels. TrAC Trends Anal. Chem. 2016, 82, 286–306. [Google Scholar] [CrossRef]
- SARS-CoV-2 Reference Panel Comparative Data. 2020. Available online: https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/sars-cov-2-reference-panel-comparative-data (accessed on 31 March 2021).
- Coronavirus (COVID-19) Update: FDA Authorizes First Antigen Test to Help in the Rapid Detection of the Virus that Causes COVID-19 in Patients. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-antigen-test-help-rapid-detection-virus-causes (accessed on 7 September 2020).
- In Vitro Diagnostics EUAs. 2020. Available online: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas (accessed on 7 September 2020).
- Interim Guidance for Rapid Antigen Testing for SARS-CoV-2. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines.html#:~:text=Ideally%2C%20confirmatory%20RT%2DPCR%20testing,to%20recommend%20the%20patient%20isolate. (accessed on 21 September 2020).
- Lambert-Niclot, S.; Cuffel, A.; Le Pape, S.; Vauloup-Fellous, C.; Morand-Joubert, L.; Roque-Afonso, A.-M.; Le Goff, J.; Delaugerre, C. Evaluation of a rapid diagnostic assay for detection of SARS CoV-2 antigen in nasopharyngeal swab. J. Clin. Microbiol. 2020, 58, e00977–e01020. [Google Scholar] [CrossRef]
- Interim Guidance for Rapid Antigen Testing for SARS-CoV-2. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines.html#table2 (accessed on 7 September 2020).
- Xiao, A.T.; Tong, Y.X.; Zhang, S. False negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: Rather than recurrence. J. Med. Virol. 2020, 92, 1755–1756. [Google Scholar] [CrossRef] [Green Version]
- Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Ning, J.; Peng, D.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z.; Abu bakr Shabbir, M.; Cheng, G.; Yuan, Z. Current advances in immunoassays for the detection of antibiotics residues: A review. Food Agric. Immunol. 2020, 31, 268–290. [Google Scholar] [CrossRef]
- Ghaffari, A.; Meurant, R.; Ardakani, A. COVID-19 Serological Tests: How well do they actually perform? Diagnostics 2020, 10, 453. [Google Scholar] [CrossRef]
- Scohy, A.; Anantharajah, A.; Bodéus, M.; Kabamba-Mukadi, B.; Verroken, A.; Rodriguez-Villalobos, H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 2020, 129, 104455. [Google Scholar] [CrossRef]
- Döhla, M.; Boesecke, C.; Schulte, B.; Diegmann, C.; Sib, E.; Richter, E.; Eschbach-Bludau, M.; Aldabbagh, S.; Marx, B.; Eis-Hübinger, A.-M. Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. Public Health 2020, 182, 170–172. [Google Scholar] [CrossRef]
- Xiang, F.; Wang, X.; He, X.; Peng, Z.; Yang, B.; Zhang, J.; Zhou, Q.; Ye, H.; Ma, Y.; Li, H. Antibody detection and dynamic characteristics in patients with COVID-19. Clin. Infect. Dis. 2020, 71, 1930–1934. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020, 57, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.V.; Ghafar-Zadeh, E. Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects. Actuators 2020, 9, 137. [Google Scholar] [CrossRef]
- Forouhi, S.; Ghafar-Zadeh, E. Applications of CMOS Devices for the Diagnosis and Control of Infectious Diseases. Micromachines 2020, 11, 1003. [Google Scholar] [CrossRef]
- Shaffaf, T.; Ghafar-Zadeh, E. COVID-19 Diagnostic Strategies. Part I: Nucleic Acid-Based Technologies. Bioengineering 2021, 8, 49. [Google Scholar]
- Shaffaf, T.; Ghafar-Zadeh, E. COVID-19 Diagnostic Strategies Part II: Protein-Based Technologies. Bioengineering 2021, 8, 54. [Google Scholar]
- Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends Anal. Chem. 2017, 97, 445–457. [Google Scholar] [CrossRef]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [Green Version]
- Taha, B.A.; Al Mashhadany, Y.; Hafiz Mokhtar, M.H.; Dzulkefly Bin Zan, M.S.; Arsad, N. An Analysis Review of Detection Coronavirus Disease 2019 (COVID-19) Based on Biosensor Application. Sensors 2020, 20, 6764. [Google Scholar] [CrossRef]
- Lee, K.-H.; Choi, S.; Lee, J.O.; Yoon, J.-B.; Cho, G.-H. CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; pp. 120–122. [Google Scholar]
- Xu, L.; Li, D.; Ramadan, S.; Li, Y.; Klein, N. Facile biosensors for rapid detection of COVID-19. Biosens. Bioelectron. 2020, 170, 112673. [Google Scholar] [CrossRef]
- Asal, M.; Ozen, O.; Sahinler, M.; Polatoglu, I. Recent Developments in Enzyme, DNA and Immuno-Based Biosensors. Sensors 2018, 18, 1924. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, J.; Hussain, C.M. Graphene-based field-effect transistor biosensors for the rapid detection and analysis of viruses: A perspective in view of COVID-19. Carbon Trends 2020, 2, 100011. [Google Scholar]
- Crivianu-Gaita, V.; Thompson, M. Aptamers, antibody scFv, and antibody Fab′ fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens. Bioelectron. 2016, 85, 32–45. [Google Scholar] [CrossRef]
- Arshavsky-Graham, S.; Urmann, K.; Salama, R.; Massad-Ivanir, N.; Walter, J.-G.; Scheper, T.; Segal, E. Aptamers vs. antibodies as capture probes in optical porous silicon biosensors. Analyst 2020, 145, 4991–5003. [Google Scholar] [CrossRef]
- Soler, M.; Estevez, M.C.; Cardenosa-Rubio, M.; Astua, A.; Lechuga, L.M. How nanophotonic label-free biosensors can contribute to rapid and massive diagnostics of respiratory virus infections: COVID-19 case. ACS Sens. 2020, 5, 2663–2678. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, Q.; Jing, Q.; Ao, S.; Zhang, Z.; Ding, M.; Wu, M.; Liu, K.; Wang, W.; Ling, Y. Electrical probing of COVID-19 spike protein receptor binding domain via a graphene field-effect transistor. arXiv 2020, arXiv:2003.12529. [Google Scholar]
- Shao, W.; Shurin, M.R.; Wheeler, S.E.; He, X.; Star, A. Rapid Detection of SARS-CoV-2 Antigens Using High-Purity Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Appl. Mater. Interfaces 2021, 13, 10321–10327. [Google Scholar] [CrossRef]
- Xian, M.; Luo, H.; Xia, X.; Fares, C.; Carey IV, P.H.; Chiu, C.-W.; Ren, F.; Shan, S.-S.; Liao, Y.-T.; Hsu, S.-M. Fast SARS-CoV-2 virus detection using disposable cartridge strips and a semiconductor-based biosensor platform. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2021, 39, 033202. [Google Scholar]
- Murugan, D.; Bhatia, H.; Sai, V.; Satija, J. P-FAB: A fiber-optic biosensor device for rapid detection of COVID-19. Trans. Indian Natl. Acad. Eng. 2020, 5, 211–215. [Google Scholar] [CrossRef]
- Mahari, S.; Roberts, A.; Shahdeo, D.; Gandhi, S. eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv 2020. preprint. [Google Scholar]
- Ishikawa, F.N.; Chang, H.-K.; Curreli, M.; Liao, H.-I.; Olson, C.A.; Chen, P.-C.; Zhang, R.; Roberts, R.W.; Sun, R.; Cote, R.J.; et al. Label-Free, Electrical Detection of the SARS Virus N-Protein with Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. ACS Nano 2009, 3, 1219–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.C.; Chang, Y.-F.; Chen, K.-H.; Su, L.-C.; Lee, C.-W.; Chen, C.-C.; Chen, Y.-M.A.; Chou, C. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosens. Bioelectron. 2009, 25, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Hideshima, S.; Hayashi, H.; Hinou, H.; Nambuya, S.; Kuroiwa, S.; Nakanishi, T.; Momma, T.; Nishimura, S.-I.; Sakoda, Y.; Osaka, T. Glycan-immobilized dual-channel field effect transistor biosensor for the rapid identification of pandemic influenza viral particles. Sci. Rep. 2019, 9, 11616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.; Choi, W.; Kim, D.; Jin, B.; Lee, J.-S. Highly sensitive detection of influenza A (H1N1) virus with silicon nanonet BioFETs. IEEE Sens. J. 2019, 19, 10985–10990. [Google Scholar] [CrossRef]
- Chiang, P.L.; Chou, T.C.; Wu, T.H.; Li, C.C.; Liao, C.D.; Lin, J.Y.; Tsai, M.H.; Tsai, C.C.; Sun, C.J.; Wang, C.H. Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chem. Asian J. 2012, 7, 2073–2079. [Google Scholar] [CrossRef]
- Djaileb, A.; Charron, B.; Jodaylami, M.H.; Thibault, V.; Coutu, J.; Stevenson, K.; Forest, S.; Live, L.S.; Boudreau, D.; Pelletier, J.N. A rapid and quantitative serum test for SARS-CoV-2 antibodies with portable surface plasmon resonance sensing. ChemRvix 2020, 15. [Google Scholar] [CrossRef]
- Layqah, L.A.; Eissa, S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta 2019, 186, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pirzada, M.; Altintas, Z. Nanomaterials for healthcare biosensing applications. Sensors 2019, 19, 5311. [Google Scholar] [CrossRef] [Green Version]
- Panchal, M.B.; Upadhyay, S.H. Boron nitride nanotube-based biosensing of various bacterium/viruses: Continuum modelling-based simulation approach. IET Nanobiotechnology 2013, 8, 143–148. [Google Scholar] [CrossRef]
- Lei, K.-M.; Mak, P.-I.; Law, M.-K.; Martins, R.P. CMOS biosensors for in vitro diagnosis–transducing mechanisms and applications. Lab Chip 2016, 16, 3664–3681. [Google Scholar] [CrossRef] [Green Version]
- Natesan, M.; Wu, S.-W.; Chen, C.-I.; Jensen, S.M.; Karlovac, N.; Dyas, B.K.; Mudanyali, O.; Ulrich, R.G. A smartphone-based rapid telemonitoring system for Ebola and Marburg disease surveillance. ACS Sens. 2018, 4, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Zeinhom, M.M.A.; Wang, Y.; Song, Y.; Zhu, M.-J.; Lin, Y.; Du, D. A portable smart-phone device for rapid and sensitive detection of E. coli O157: H7 in Yoghurt and Egg. Biosens. Bioelectron. 2018, 99, 479–485. [Google Scholar] [CrossRef]
- Sun, A.; Alvarez-Fontecilla, E.; Venkatesh, A.; Aronoff-Spencer, E.; Hall, D.A. A 64 × 64 high-density redox amplified coulostatic discharge-based biosensor array in 180 nm CMOS. In Proceedings of the ESSCIRC 2017—43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 11–14 September 2017; pp. 368–371. [Google Scholar]
- Balasubramanian, A.; Bhuva, B.; Mernaugh, R.; Haselton, F.R. Si-based sensor for virus detection. IEEE Sens. J. 2005, 5, 340–344. [Google Scholar] [CrossRef]
- Nikkhoo, N.; Gulak, P.G.; Maxwell, K. Rapid detection of E. coli bacteria using potassium-sensitive FETs in CMOS. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 621–630. [Google Scholar] [CrossRef]
- Viswanath, B.; Kristine, Y.M.; Kim, S. Recent trends in the development of complementary metal oxide semiconductor image sensors to detect foodborne bacterial pathogens. TrAC Trends Anal. Chem. 2018, 98, 47–57. [Google Scholar] [CrossRef]
- Lai, W.-A.; Lin, C.-H.; Yang, Y.-S.; Lu, M.S.-C. Ultrasensitive and label-free detection of pathogenic avian influenza DNA by using CMOS impedimetric sensors. Biosens. Bioelectron. 2012, 35, 456–460. [Google Scholar] [CrossRef]
- Couniot, N.; Vanzieleghem, T.; Rasson, J.; Van Overstraeten-Schlögel, N.; Poncelet, O.; Mahillon, J.; Francis, L.; Flandre, D. Lytic enzymes as selectivity means for label-free, microfluidic and impedimetric detection of whole-cell bacteria using ALD-Al2O3 passivated microelectrodes. Biosens. Bioelectron. 2015, 67, 154–161. [Google Scholar] [CrossRef]
- Couniot, N.; Bol, D.; Poncelet, O.; Francis, L.A.; Flandre, D. A capacitance-to-frequency converter with on-chip passivated microelectrodes for bacteria detection in saline buffers up to 575 MHz. IEEE Trans. Circuits Syst. II Express Briefs 2014, 62, 159–163. [Google Scholar] [CrossRef]
- Yao, L.; Hajj-Hassan, M.; Ghafar-Zadeh, E.; Shabani, A.; Chodavarapu, V.; Zourob, M. CMOS capactive sensor system for bacteria detection using phage organisms. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Piscataway, NJ, USA, 4–7 May 2008; pp. 877–880. [Google Scholar]
- Yao, L.; Lamarche, P.; Tawil, N.; Khan, R.; Aliakbar, A.M.; Hassan, M.H.; Chodavarapu, V.P.; Mandeville, R. CMOS conductometric system for growth monitoring and sensing of bacteria. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 223–230. [Google Scholar] [CrossRef]
- Niitsu, K.; Ota, S.; Gamo, K.; Kondo, H.; Hori, M.; Nakazato, K. Development of microelectrode arrays using electroless plating for CMOS-based direct counting of bacterial and HeLa cells. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 607–619. [Google Scholar] [CrossRef]
- Gamo, K.; Nakazato, K.; Niitsu, K. Design, theoretical analysis, and experimental verification of a CMOS current integrator with 1.2 × 2.05 µm2 microelectrode array for high-sensitivity bacterial counting. Jpn. J. Appl. Phys. 2016, 56, 01AH01. [Google Scholar]
- Wang, H.; Chen, Y.; Hassibi, A.; Scherer, A.; Hajimiri, A. A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet. In Proceedings of the Solid-State Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 8–12 February 2009; pp. 438–439. [Google Scholar]
- Nguyen, N.-T.; Hejazian, M.; Ooi, C.H.; Kashaninejad, N. Recent advances and future perspectives on microfluidic liquid handling. Micromachines 2017, 8, 186. [Google Scholar] [CrossRef] [Green Version]
Website | Technology | Biomarker (Protein) | Sensitivity | Specificity | PPA | NPA | Time (min) | Technology Highlights |
---|---|---|---|---|---|---|---|---|
[22] | ELISA- Color change | IgA, IgG, and IgM antibodies | 97.5% | 99.06% | 97.5% | 99.1% | >120 | Advantage: High-throughput Well-stablished technology Detects both current and previous infection Disadvantage: Requiring specialized personal time consuming Costly Many manuals’ steps increasing the error risk Laboratory-based |
[23] | LFIA- AuNP Antibody detecting cassette | IgM/IgG antibodies | 93.8% after day 7 | 96.0% | 93.8% | 96.0% | 10-20 | Advantage: PoC test Cost-effective Rapid Useful for disease follow-up Requiring small sample volume Room temperature storage Disadvantage: Low accuracy Analyzes one sample per test Not useful for early detection False results specifically when tested in the early phases of the infection In symptomatic cases, negative result requires RT-PCR For confirmation |
[24] | LFIA- AuNP Antibody detecting cassette | IgM/IgG antibodies | 50% at Day 1~6, 91.7% after Day 7 | 97.5% | 60.0% | 98.8% | 10-15 | |
[16] | LFIA- AuNP Antigen detecting cassette | Virus Nucleocapsid antigen | 97.1% | 98.5% | 97.1% | 98.ase5% | 15 | Advantage: PoC test Cost-effective Rapid Low sensitivity High specificity Useful for detection in asymptomatic cases and before the symptom initiation Disadvantage: False results Not useful for early detection In symptomatic cases, negative result requires RT-PCR as confirmation. |
[25] | Immunoassay- Fluorescent detection | Virus Nucleocapsid antigen | 100% in three first days, 97.6% on day 12 | 96.6% | 97.6% | 96.6% | 12 | Advantage: Small sample volume High accuracy More accurate and cost-effective than ELISA Simultaneous detection of multiple targets Simple designs Disadvantage: Laboratory-based Requiring manual steps Requiring an additional reader device |
Virus | Target | Biorecognition Element | Biosensor Type | Surface | Linker | LoD | Specificity | Time | Sample | Year Ref. | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
SARS-CoV-2 | S protein | Ab against SARS-CoV-2 S protein | Electrochemical—G-FET | Si/SiO2/Graphene | PBASE | 242 particles/mL | No measurable cross-reaction (with MERSCoV Antigen) | - | Nasopharyngeal swabs, no sample preparation required | 2020 [59] | Electrochemical sensors:
|
S protein (S1 subunit) | Ab against SARS-COV S protein (S1 subunit) (CSAb)—COVID-19 S protein (S1 subunit) Ag | Electrochemical—G-FET | Graphene | No info. | 0.2 pM | No measurable cross-reaction | ~2 min | S1 solution in PBS | 2020 [68] | ||
SAg and NAg | SARS/SARS-CoV-2 S protein (sub-unit 1) polyclonal Ab and anti-N protein Ab | Electrochemical SWCNT—FET | Si/SiO2 | EDC/sulfo-NHS | 0.55 fg/mL for SAg and 0.016 fg/mL for NAg | Minimal responses to nonspecific proteins | <5 min | Nasopharyngeal swabs, no sample preparation required | 2021 [69] | ||
S protein (S1 subunit) | SARS-CoV-2 Ab | Electrochemical—MOSFET | Gold-plated carbon electrodes | TGA functionalized electrode was submerged in N,N0-dicyclohexylcarbodi-imide and N-hydroxysuccinimide | 100 PFU/mL | - | 15 min | Two different purchased antibodies | 2021 [70] | ||
N protein | anti-N protein mAb | Optical—P-FAB | U-bent fiber-optic Probe (silica fiber) | Thiol-PEG-NHS | 106 particles/mL | Label-free biosensor: poor specificity Labelled biosensor: best possible specificity | 5 min for labella and 15 min for label-free bioassay | Patient’s saliva sample, requiring minimal preparation process | 2020 [71] | ||
S protein | nCovid-19 mAb | Electrochemical—eCovSens (PCB-based) | Glass surface coated with fluorine doped tin oxide | Immobilized homogenous layer of AuNPs | 90 fM | No cross reactivity with HIV, JEV, and AIV antigens | 10-30 s | Spiked saliva samples | 2020 [72] | ||
SARS-CoV | N protein | AMP (Fibronectin) | Electrochemical—FET | Si/SiO2/In2O3NWs | EDC | 100 nM | - | 10-15 min | N solution in PBS | 2009 [73] | |
N protein | Anti-SARS-CoV N-1 mAb | Optical—LSPCF | PMMA optical fiber | Ethyl acetate | 1.00 pg.mL−1 | Higher than other immunoassays such as single capture and labelinh | - | Recombinant SARS-CoV N protein in PBS buffer | 2009 [74] | ||
Influenza A virus | Human H1N1 and avian H5N1 IFV particles | 6′-sialyllactose and 3′-sialyllactose | Electrochemical—Dual-channel FET | SiO2 | Sialic acid-α2,6-galactose and sialic acid-α2,3-galactose | 100.5 TCID50/mL | Detects Newcastle disease virus (NDV) as well | - | Mucus samples, preparation includes mixing the nasal mucus with virus suspension | 2019 [75] | |
Virus particle | mAb of the H1N1 virus | Electrochemical—Nanonet FET | SiO2 | Anhydrous ethanol with APTES/glutaraldehyde | 10 pg/mL | Negligible non-specific bindings | 20 min | H1N1 virus solutions in PBS | 2019 [76] | ||
Virus particle | mAb against H5N2 virus | Electrochemical—SiNW-FET | SiO2/Si | MPTMS | ~3 × 104 particles/mL | No cross-reaction | 40 min | AIV solution in PBS | 2012 [77] |
Virus | Target | Biorecognition Element | Biosensor Type | Surface | Linker | LoD | Specificity | Time | Sample | Year Ref. | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
SARS-CoV-2 | Anti-SARS-CoV-2 Ab | SARS-CoV-2 recombinant N protein | Optical—SPR | Gold surface | EDC/NHS (surface modified with a monolayer of 3-mercaptopropionic-Leu-His-Asp-Leu-His-Asp-COOH) | ~1 μg/mL | - | 15 min | N protein solution in PBS | 2020 [78] | Portable Device Label-free Rapid—15-min duration The highest response for antibody detection: 226 RU Increase in rN protein concentration on the surface: decrease in antibody detection Steric hindrance has decreased access to rN binding site in higher concentrations |
MERS-CoV | Ab for MERS-CoV | S protein (S1 subunit) | Electrochemical—SWV | AuNPs deposited on carbon array | Cysteamine/glutaraldehyde | 0.4 pg.mL−1 | No cross reaction | 20 min | MERS-CoV antigen solution in PBS | 2019 [79] | Antibody binding to the BREs: reduces the SWV reduction peak current and consequently decreases the current. No response was observed for control electrodes Non-significant adsorption was not detected on the sensors The sensor demonstrated good repeatability and stability after 14 days |
HCoV | Ab for HCoV | HumanCoV proteins | Electrochemical—SWV | AuNPs deposited on carbon array | Cysteamine/glutaraldehyde | 1 pg.mL−1 | No cross reaction | 20 min | HCoV antigen solution in PBS |
Application | Detection Target | Technique | Sensor Surface | CMOS Tech. | Area | Array/Pixel | Power (Vdd) | Some Other Features | Ref. |
---|---|---|---|---|---|---|---|---|---|
Diagnosis of infectious disease (Dengue) | Antigen of purified mouse IgG and human anti-dengue virus IgG | Magnetic (Hall sensor) | Gold | 0.25 µm | 2.5 mm × 2.5 mm | 1024 | - | AT = 30 s for 120 pixels | [30] |
Rubella and mumps virus detection | Capsid protein | Electrochemical (Coulostatic discharge sensing) | Gold | 0.18 µm | 5 mm × 5 mm | 64 × 64 | 95 mW (2.5 V) | LoD = 100 nM | [85] |
The reader of LFIA for PoC diagnostics of Influenza A nucleoprotein | Influenza A nucleoproteins | Optical (LFIA reader) | - | 0.35 µm | 12.28 mm2 * | 4 × 64 | 21 µW (2 V) | RN = 1.9 mVrms SNR = 50 dB, FR = 67 fps | [33] |
Detection of a bacterial virus | M13KO7 | Electrochemical (capacitive) | Si/SiO2 | 1.5 µm | - | 1 | - | - | [86] |
Detection of single bacterial cell | S. epidermidis | Electrochemical (Capacitive) | Al2O3 | 0.25 µm | 14 µm × 16 µm | 16 × 16 | 29 µW (2.5 V) | SNR = 37 dB, LoD ~ 7 bacteria (450 aF), Sensitivity = 55 mV/fF (2.2 mV/bacteria), IDR = 0.45 fF to 57 fF | [26] |
Detection of B. globigii spores based on the combined use of ELISA and LIF detection | B. globigii spores | Optical (LIF) | Silica capillaries | - | - | 4 × 4 | - | LoD = 0.55 cells/probe | [35] |
Detection of S. pneumonia by the measurement of IgG antibody concentrations in human blood sera | IgG antibody | Optical (Chemiluminescence/fluorescence imaging) | SiO2 | 0.5 µm | - | 4 × 8 | - | - | [34] |
Detection of E. coli | E. coli | Electrochemical (K+-sensitive FET) | SiO2 | 0.18 µm | 1.5 mm × 0.6 mm | 6 | - | AT < 30 Min | [87] |
Tuberculosis diagnostics | Interferon-γ protein | Magnetic (frequency-shift based sensing) | Silicon nitride | 0.13 µm | 2.95 µm × 2.56 µm | 8 | 165 mW | LoD = 1 pM | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaffaf, T.; Forouhi, S.; Ghafar-Zadeh, E. Towards Fully Integrated Portable Sensing Devices for COVID-19 and Future Global Hazards: Recent Advances, Challenges, and Prospects. Micromachines 2021, 12, 915. https://doi.org/10.3390/mi12080915
Shaffaf T, Forouhi S, Ghafar-Zadeh E. Towards Fully Integrated Portable Sensing Devices for COVID-19 and Future Global Hazards: Recent Advances, Challenges, and Prospects. Micromachines. 2021; 12(8):915. https://doi.org/10.3390/mi12080915
Chicago/Turabian StyleShaffaf, Tina, Saghi Forouhi, and Ebrahim Ghafar-Zadeh. 2021. "Towards Fully Integrated Portable Sensing Devices for COVID-19 and Future Global Hazards: Recent Advances, Challenges, and Prospects" Micromachines 12, no. 8: 915. https://doi.org/10.3390/mi12080915
APA StyleShaffaf, T., Forouhi, S., & Ghafar-Zadeh, E. (2021). Towards Fully Integrated Portable Sensing Devices for COVID-19 and Future Global Hazards: Recent Advances, Challenges, and Prospects. Micromachines, 12(8), 915. https://doi.org/10.3390/mi12080915