Resolution-Enhancing Structure for the Electric Field Microsensor Chip
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of the Electric Field Microsensor
2.2. Package Structure Design and Simulation
2.3. Signal Processing Circuit and Demodulation Algorithm Design
3. Results
3.1. Laboratory Calibration and Accuracy Test Results
3.2. The Charge Leakage in Package
3.3. Real Test Results in the OLED Manufacturing Line
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, B.-P.; Zhou, R.-D.; Zhang, S.; Yang, N.; Yang, X.; Fang, J.-Y.; Song, F.-L.; Zhang, G.-J. Surface electrostatic discharge of charged typical space materials induced by strong electromagnetic interference. J. Phys. D Appl. Phys. 2021, 54, 275002. [Google Scholar] [CrossRef]
- Li, H.; Miao, M.; Zhou, Y.; Salcedo, J.A.; Hajjar, J.-J.; Sundaram, K.B. Modeling and Simulation of Comprehensive Diode Behavior Under Electrostatic Discharge Stresses. IEEE Trans. Device Mater. Reliab. 2018, 19, 90–96. [Google Scholar] [CrossRef]
- Shen, Y.S.; Ker, M.D. The Impact of Holding Voltage of Transient Voltage Suppressor (TVS) on Signal Integrity of Micro-electronics System with CMOS ICs Under System-Level ESD and EFT/Burst Tests. IEEE T Electron. Dev. 2021, 99, 1–8. [Google Scholar]
- Liu, J.; Qian, L.; Tian, R.; Liu, Z.; Zhao, L.; Cheng, H. Self-triggered stacked silicon-controlled rectifier structure (STSSCR) for on-chip electrostatic discharge (ESD) protection. Microelectron. Reliab. 2017, 71, 1–5. [Google Scholar]
- Kumar, M.; Mukherjee, B.; Sen, S. Analysis of static charge induced pull-in of an electrostatic MEMS. Commun. Nonlinear Sci. 2021, 96, 105690. [Google Scholar] [CrossRef]
- Olufayo, O.A.; Abou-El-Hossein, K.; Kadernani, M. Tribo-electric Charging in the Ultra-high Precision Machining of Contact Lens Polymers. Procedia Mater. Sci. 2014, 6, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Lotfzadeh, H.; Khorasanloo, F.H.; Fathollahi, M. Reduction of electrostatic charging PETN and HMX explosives by PVP and ionic liquid. J. Electrost. 2020, 108, 103513. [Google Scholar] [CrossRef]
- Chiu, A.M. Surface Mount Package with Integral Electrostatic Charge Dissipating Ring Using Lead Frame as ESD Device. U.S. Patent 10/827,184, 19 April 2004. [Google Scholar]
- Ikehata, T. Static elimination in vacuum using plasma jet. Vacuum 2019, 166, 184–190. [Google Scholar] [CrossRef]
- Kim, D.; Joo, J.-H.; Ho, W. Characteristics of VUV ionizer in a vacuum chamber of flat panel displays. J. Electrost. 2017, 90, 54–60. [Google Scholar] [CrossRef]
- Ohsawa, A. 2-D electrohydrodynamic simulations towards zero offset voltage with corona ionisers. J. Electrost. 2013, 71, 116–124. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lin, N.-C.; Lin, B.-S. A wireless and wearable measurement system for human body electrostatic monitoring application. Measurement 2018, 117, 365–370. [Google Scholar] [CrossRef]
- Enta, R. Electrostatic Discharge Monitoring and Manufacturing Process Control System. U.S. Patent 7,353,120, 1 April 2008. [Google Scholar]
- Antunes De Sá, A.; Marshall, R.; Sousa, A.; Viets, A.; Deierling, W. An Array of Low-Cost, High-Speed, Autonomous Electric Field Mills for Thunderstorm Research. Earth Space Sci. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yuan, H.; Song, X.; Zhao, L.; Liu, Y.; Lin, L. Model, Design, and Testing of Field Mill Sensors for Measuring Electric Fields Under High-Voltage Direct-Current Power Lines. IEEE Trans. Ind. Electron. 2017, 65, 608–615. [Google Scholar] [CrossRef]
- Harrison, R.G.; Marlton, G.J. Fair weather electric field meter for atmospheric science platforms. J. Electrost. 2020, 107, 103489. [Google Scholar] [CrossRef]
- Wolfgang Warmbier. Electrostatic Field Meter—EFM 51 User Manual V0504; Wolfgang Warmbier: Hilzingen, Germany, 2008. [Google Scholar]
- Reznikov, M.; Noras, M.; Salazar, M. Comparison of vibrating and fixed Kelvin Probe for non-destructive evaluation. J. Electrost. 2018, 96, 57–63. [Google Scholar] [CrossRef]
- Barzyk, W.; Vuorinen, J. Application of the vibrating plate (VP) technique to measuring electric surface potential, ΔV, of solu-tions; the flow cell for simultaneous measurement of the ΔV and the surface pressure, Π. Colloid Surf. A 2011, 385, 1–10. [Google Scholar] [CrossRef]
- Simco-Ion. FMX-004 User Manual; eStat Solutions: Telford, UK, 2014. [Google Scholar]
- Keyence Corporation. SK-1000 User Manual; Keyence: Osaka, Japan, 2014. [Google Scholar]
- Hsu, C.H.; Muller, R.S. Micromechanical electrostatic voltmeter. In Proceedings of the TRANSDUCERS ’91, the 1991 International Conference on Solid-State Sensors & Actuators IEEE, San Francisco, CA, USA, 24–27 June 1991; IEEE: Piscataway, NJ, USA, 2002. [Google Scholar]
- Horenstein, M.N.; Stone, P.R. A micro-aperture electrostatic field mill based on MEMS technology. J. Electrostat. 2001, 51, 515–521. [Google Scholar] [CrossRef]
- Riehl, S.P.; Scott, L.K.; Muller, S.R.; Howe, T.R.; Yasaitis, A.J. Electrostatic charge and field sensors based on micromechanical resonators. J. Microelectromech. Syst. 2003, 12, 577–589. [Google Scholar] [CrossRef]
- Peng, C.; Chen, X.; Bai, Q.; Luo, L.; Xia, S. A Novel High Performance Micromechanical Resonant Electrostatic Field Sensor Used in Atmospheric Electric Field Detection. In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, 22–26 January 2006; pp. 698–701. [Google Scholar]
- Lundberg, K.H.; Shafran, J.S.; Kuang, J.; Judy, M.; Denison, T.A. A self-resonant MEMS-based electrostatic field sensor. In Proceedings of the 2006 American Control Conference, Minneapolis, MI, USA, 14–16 June 2006. [Google Scholar]
- Bahreyni, B.; Wijeweera, G.; Shafai, C.; Rajapakse, A. Analysis and Design of a Micromachined Electric-Field Sensor. J. Microelectromech. Syst. 2008, 17, 31–36. [Google Scholar] [CrossRef]
- Kobayashi, T.; Oyama, S.; Takahashi, M.; Maeda, R.; Itoh, T. Microelectromechanical Systems-Based Electrostatic Field Sensor Using Pb(Zr, Ti)O3Thin Films. Jpn. J. Appl. Phys. 2008, 47, 7533–7536. [Google Scholar] [CrossRef]
- Peng, C.; Yang, P.; Zhang, H.; Guo, X.; Xia, S. Design of a SOI MEMS resonant electric field sensor for power engineering applications. In Proceedings of the 2010 IEEE Sensors Conference, Waikoloa, HI, USA, 1–4 November 2010; pp. 1183–1186. [Google Scholar]
- Yang, P.; Peng, C.; Zhang, H.; Liu, S.; Fang, D.; Xia, S. A high sensitivity SOI electric-field sensor with novel comb-shaped microelectrodes. In Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 1034–1037. [Google Scholar]
- Mou, Y.; Yu, Z.; Huang, K.; Ma, Q.; Zeng, R.; Wang, Z. Research on a Novel MEMS Sensor for Spatial DC Electric Field Measurements in an Ion Flows Field. Sensors 2018, 18, 1740. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Liang, J.; Hao, Y.; Chang, H.L. A Micro Resonant DC Electric Field Sensor Based on Mode Localization Phenomenon. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea, 27–31 January 2019; pp. 849–852. [Google Scholar]
- Afsharipour, E.; Chen, T.; Zhou, Y.; Wijeweera, G.; Shafai, C. Study of the shielding effect of a vertical moving shutter microm-achined field mill for measuring dc electric field. Meas. Sci. Technol. 2020, 31, 105105. [Google Scholar] [CrossRef]
- Liyanage, S.; Shafai, C.; Chen, T.; Rajapakse, A. Torsional Moving Electric Field Sensor with Modulated Sensitivity and without Reference Ground. Proceedings 2017, 1, 350. [Google Scholar] [CrossRef] [Green Version]
- Ling, B.; Peng, C.; Ren, R.; Chu, Z.; Zhang, Z.; Lei, H.; Xia, S. Design, Fabrication and Characterization of a MEMS-Based Three-Dimensional Electric Field Sensor with Low Cross-Axis Coupling Interference. Sensors 2018, 18, 870. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Wen, X.; Chu, Z.; Ni, X.; Peng, C. AC/DC Fields Demodulation Methods of Resonant Electric Field Microsensor. Micromachines 2020, 11, 511. [Google Scholar] [CrossRef]
- Lei, H.; Xia, S.; Chu, Z.; Ling, B.; Peng, C.; Zhang, Z.; Liu, J.; Zhang, W. An Electric Field Microsensor with Mutual Shielding Electrodes. Micromachines 2021, 12, 360. [Google Scholar] [CrossRef]
- Yang, P.; Chen, B.; Wen, X.; Peng, C.; Xia, S.; Hao, Y. A novel MEMS chip-based atmospheric electric field sensor for lightning hazard warning applications. In Proceedings of the 2015 IEEE Sensors Conference, Busan, Korea, 1–4 November 2015. [Google Scholar]
- Wijeweera, G.; Shafai, C.; Rajapakse, A. Measuring power system voltage remotely using micromachined electric field sensor. In Proceedings of the 1st Microsystems and Nanoelectronics Research Conference, Ottawa, ON, Canada, 15 October 2008; pp. 209–212. [Google Scholar]
- Xia, S.; Wen, X.; Chen, X.; Peng, C.; Yang, P. High Resistivity Material-based Packaging Element for Electric Field Sensor. US Patent 10,514,406 B2, 24 December 2019. [Google Scholar]
- Wen, X.; Yang, P.; Zhang, B.; Peng, C. High-resolution noncontact electrostatic voltage meter based on microsensor chip. In Proceedings of the IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 25–29 April 2021; pp. 1893–1896. [Google Scholar]
- Tsujimura, T. OLED Display Fundamentals and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
Part Number | Part Name | Radius (mm) | Height (mm) | Material | Relative Permittivity |
---|---|---|---|---|---|
① | Package shell | 4 | 1.9 | Ceramics | 9 |
② | MEMS chip | 2.5 | 0.5 | Silicon | / |
③ | Air | 3.3 | 1.55 | Air | 1 |
④ | Inner electrode | 0.8~3.2 | 0.1~0.9 | Covar | / |
⑤ | Package cap | 4 | 0.1 | Covar | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Yang, P.; Zhang, Z.; Chu, Z.; Peng, C.; Liu, Y.; Wu, S.; Zhang, B.; Zheng, F. Resolution-Enhancing Structure for the Electric Field Microsensor Chip. Micromachines 2021, 12, 936. https://doi.org/10.3390/mi12080936
Wen X, Yang P, Zhang Z, Chu Z, Peng C, Liu Y, Wu S, Zhang B, Zheng F. Resolution-Enhancing Structure for the Electric Field Microsensor Chip. Micromachines. 2021; 12(8):936. https://doi.org/10.3390/mi12080936
Chicago/Turabian StyleWen, Xiaolong, Pengfei Yang, Zhouwei Zhang, Zhaozhi Chu, Chunrong Peng, Yutao Liu, Shuang Wu, Bo Zhang, and Fengjie Zheng. 2021. "Resolution-Enhancing Structure for the Electric Field Microsensor Chip" Micromachines 12, no. 8: 936. https://doi.org/10.3390/mi12080936
APA StyleWen, X., Yang, P., Zhang, Z., Chu, Z., Peng, C., Liu, Y., Wu, S., Zhang, B., & Zheng, F. (2021). Resolution-Enhancing Structure for the Electric Field Microsensor Chip. Micromachines, 12(8), 936. https://doi.org/10.3390/mi12080936