Fabrication of Optical Fibers with Multiple Coatings for Swelling-Based Chemical Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Realization of Multiple Sensor on a Single Fiber
2.2. Fusion Splicing of Differently Coated Fibers
2.3. Testing of the Strain Response in Water and Water/Ethanol Mixtures
2.4. Methods to Recoat Optical Fibers with Multiple Coatings
2.4.1. Removing of the Original Coating
2.4.2. Molding of UV Crosslinking Polymer
2.4.3. Dip Coating and Paint Coating
3. Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puttnam, B.J.; Luis, R.S.; Klaus, W.; Sakaguchi, J.; Mendinueta, J.-M.D.; Awaji, Y.; Wada, N.; Tamura, Y.; Hayashi, T.; Hirano, M.; et al. 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Rao, Y.-J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355–375. [Google Scholar] [CrossRef]
- Othonos, A.; Kalli, A. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing; Artech House: Boston, MA, USA, 1999. [Google Scholar]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Bao, X.; Chen, L. Recent Progress in Distributed Fiber Optic Sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [Green Version]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Qazi, H.H.; Bin Mohammad, A.B.; Akram, M. Recent Progress in Optical Chemical Sensors. Sensors 2012, 12, 16522–16556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, T.; Sun, T.; Grattan, K.; Parry, D.; Lade, R.; Powell, B. Polymer-coated fiber Bragg grating for relative humidity sensing. IEEE Sens. J. 2005, 5, 1082–1089. [Google Scholar] [CrossRef]
- Kronenberg, P.; Rastogi, P.K.; Giaccari, P.; Limberger, H.G. Relative humidity sensor with optical fiber Bragg gratings. Opt. Lett. 2002, 27, 1385–1387. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.-J.; Gu, B.; An, Q.-F.; Yang, C.; Guan, Y.L.; Yong, K.-T. Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coord. Chem. Rev. 2018, 376, 348–392. [Google Scholar] [CrossRef]
- Lu, X.; Thomas, P.J.; Hellevang, J.O. A Review of Methods for Fibre-Optic Distributed Chemical Sensing. Sensors 2019, 19, 2876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Ruiz, A.; Pastor-Graells, J.; Martins, H.F.; Tow, K.H.; Thévenaz, L.; Martin-Lopez, S.; Gonzalez-Herraez, M. Distributed photothermal spectroscopy in microstructured optical fibers: Towards high-resolution mapping of gas presence over long distances. Opt. Express 2017, 25, 1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Liu, F.; He, X.; Jin, W.; Zhang, M.; Yang, F.; Ho, H.L.; Tan, Y.; Gu, L. Distributed gas sensing with optical fibre photothermal interferometry. Opt. Express 2017, 25, 31568–31585. [Google Scholar] [CrossRef]
- Stolov, A.A.; Wrubel, J.A.; Simoff, D.A. Thermal stability of specialty optical fiber coatings. J. Therm. Anal. Calorim. 2016, 124, 1411–1423. [Google Scholar] [CrossRef]
- Rivero, P.J.; Goicoechea, J.; Arregui, F.J. Optical Fiber Sensors Based on Polymeric Sensitive Coatings. Polymers 2018, 10, 280. [Google Scholar] [CrossRef] [Green Version]
- Sedighi, S.; Soto, M.; Jderu, A.; Dorobantu, D.; Enachescu, M.; Ziegler, D. Swelling-Based Distributed Chemical Sensing with Standard Acrylate Coated Optical Fibers. Sensors 2021, 21, 718. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-S.; Han, Y.; Joo, K.-I. Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating. Opt. Express 2010, 18, 24753. [Google Scholar] [CrossRef]
- Boersma, A.; Saalmink, M.; Lucassen, T.; Wiegersma, S.; Jansen, R.; Jansen, R.; Cheng, L. Fiber Bragg distributed chemical sensor. In Proceedings of the 2011 IEEE SENSORS Proceedings, Limerick, Ireland, 28–31 October 2011; Volume 25, pp. 1480–1483. [Google Scholar] [CrossRef]
- Boland, P.; Sethuraman, G. Fiber Bragg grating multichemical sensor. In Proceedings of the Optics East 2006, Boston, MA, USA, 1 October 2006. [Google Scholar] [CrossRef]
- Carrillo, A.; González, E.; Rosas, A.; Márquez, A. New distributed optical sensor for detection and localization of liquid leaks: Part I. Experimental studies. Sens. Actuators A Phys. 2002, 99, 229–235. [Google Scholar] [CrossRef]
- Rondinella, V.V.; Matthewson, M.J. Effect of Chemical Stripping on the Strength and Surface Morphology of Fused Silica Optical Fiber. In Proceedings Volume 2074, Fiber Optics Reliability and Testing: Benign and Adverse Environments; SPIE: Bellingham, WA, USA, 1994. [Google Scholar] [CrossRef]
- Kumazaki, H.; Yamada, Y.; Oshima, T.; Inaba, S.; Hane, K. Micromachining of Optical Fiber Using Reactive Ion Etching and Its Application. Jpn. J. Appl. Phys. 2000, 39, 7142. [Google Scholar] [CrossRef]
- Vasile, G.; Vasile, I.; Sava, V. A method to remove optical fibers coating. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2013, 75, 155–160. [Google Scholar]
- The Chemistry of Nail Polish Polymers, Plasticisers and Pigments. Available online: https://www.compoundchem.com/2017/04/06/nail-polish/ (accessed on 14 October 2020).
- Zhu, G.; Zhang, M.; Lu, L.; Lou, X.; Dong, M.; Zhu, L. Metal-organic framework/enzyme coated optical fibers as waveguide-based biosensors. Sens. Actuators B Chem. 2019, 288, 12–19. [Google Scholar] [CrossRef]
- McKeown, N.B.; Budd, P.M. Polymers of Intrinsic Microporosity. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Wang, T.; Farajollahi, M.; Choi, Y.S.; Lin, I.-T.; Marshall, J.E.; Thompson, N.M.; Kar-Narayan, S.; Madden, J.D.W.; Smoukov, S.K. Electroactive polymers for sensing. Interface Focus 2016, 6, 20160026. [Google Scholar] [CrossRef]
- Kolesnikov, A.L.; Budkov, Y.; Möllmer, J.; Kiselev, M.; Gläser, R. Metal–Organic Framework Breathing in the Electric Field: A Theoretical Study. J. Phys. Chem. C 2019, 123, 10333–10338. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorobantu, D.; Jderu, A.; Enachescu, M.; Ziegler, D. Fabrication of Optical Fibers with Multiple Coatings for Swelling-Based Chemical Sensing. Micromachines 2021, 12, 941. https://doi.org/10.3390/mi12080941
Dorobantu D, Jderu A, Enachescu M, Ziegler D. Fabrication of Optical Fibers with Multiple Coatings for Swelling-Based Chemical Sensing. Micromachines. 2021; 12(8):941. https://doi.org/10.3390/mi12080941
Chicago/Turabian StyleDorobantu, Dorel, Alin Jderu, Marius Enachescu, and Dominik Ziegler. 2021. "Fabrication of Optical Fibers with Multiple Coatings for Swelling-Based Chemical Sensing" Micromachines 12, no. 8: 941. https://doi.org/10.3390/mi12080941
APA StyleDorobantu, D., Jderu, A., Enachescu, M., & Ziegler, D. (2021). Fabrication of Optical Fibers with Multiple Coatings for Swelling-Based Chemical Sensing. Micromachines, 12(8), 941. https://doi.org/10.3390/mi12080941