Fabrication of Needle-Like Silicon Nanowires by Using a Nanoparticles-Assisted Bosch Process for Both High Hydrophobicity and Anti-Reflection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Process
2.2. Etching Conditions
2.3. Surface Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jee, S.-W.; Zhou, K.; Kim, D.-W.; Lee, J.-H. A silicon nanowire photodetector using Au plasmonic nanoantennas. Nano Converg. 2014, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- Soci, C.; Zhang, A.; Bao, X.Y.; Kim, H.; Lo, Y.; Wang, D. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010, 10, 1430–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Zhang, Z.; Yin, X.; Kvit, A.; Liao, Q.; Kang, Z.; Yan, X.; Zhang, Y.; Wang, X. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2017, 2, 17045. [Google Scholar] [CrossRef]
- Alexander, F.; AlMheiri, M.; Dahal, P.; Abed, J.; Rajput, N.S.; Aubry, C.; Viegas, J.; Jouiad, M. Water splitting TiO2 composite material based on black silicon as an efficient photocatalyst. Sol. Energy Mater. Sol. Cells 2018, 180, 236–242. [Google Scholar] [CrossRef]
- Roder, P.B.; Smith, B.E.; Davis, E.J.; Pauzauskie, P.J. Photothermal heating of nanowires. J. Phys. Chem. C 2014, 118, 1407–1416. [Google Scholar] [CrossRef]
- Chen, R.; Lee, J.; Lee, W.; Li, D. Thermoelectrics of Nanowires. Chem. Rev. 2019, 119, 9260–9302. [Google Scholar] [CrossRef] [PubMed]
- Hocevar, M.; Immink, G.; Verheijen, M.; Akopian, N.; Zwiller, V.; Kouwenhoven, L.; Bakkers, E. Growth and optical properties of axial hybrid III-V/silicon nanowires. Nat. Commun. 2012, 3, 1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frolov, S.M.; Plissard, S.R.; Nadj-Perge, S.; Kouwenhoven, L.P.; Bakkers, E.P.A.M. Quantum computing based on semiconductor nanowires. MRS Bull. 2013, 38, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Gonchar, K.A.; Kitaeva, V.Y.; Zharik, G.A.; Eliseev, A.A.; Osminkina, L.A. Structural and optical properties of silicon nanowire arrays fabricated by metal assisted chemical etching with ammonium fluoride. Front. Chem. 2019, 6, 653. [Google Scholar] [CrossRef] [Green Version]
- Rashid, J.I.A.; Abdullah, J.; Yusof, N.A.; Hajian, R. The development of silicon nanowire as sensing material and its applications. J. Nanomater. 2013, 2013, 328093. [Google Scholar]
- Huang, Z.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285–308. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, T.; Zhang, P.; Zhao, Y.; Li, S. Review application of nanostructured black silicon. Nanoscale Res. Lett. 2018, 13, 110. [Google Scholar] [CrossRef]
- Jeong, Y.; Hong, C.; Jung, Y.H.; Akter, R.; Yoon, H.; Yoon, I. Enhanced Surface Properties of Light-Trapping Si Nanowires Using Synergetic Effects of Metal-Assisted and Anisotropic Chemical Etchings. Sci. Rep. 2019, 9, 15914. [Google Scholar] [CrossRef]
- Hung, Y.J.; Lee, S.L.; Thibeault, B.J.; Coldren, L.A. Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 869–877. [Google Scholar] [CrossRef]
- Smyrnakis, A.; Almpanis, E.; Constantoudis, V.; Papanikolaou, N.; Gogolides, E. Optical properties of high aspect ratio plasma etched silicon nanowires: Fabrication-induced variability dramatically reduces reflectance. Nanotechnology 2015, 26, 85301. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, V.; Wittemann, J.V.; Senz, S.; Gósele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702. [Google Scholar] [CrossRef]
- Bui, T.T.; Tu, H.P.; Dang, M.C. DRIE process optimization to fabricate vertical silicon nanowires using gold nanoparticles as masks. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 45016. [Google Scholar] [CrossRef]
- Wang, D.-S.; Chao, J.-J.; Hung, S.-C.; Lin, C.-F. Fabrication of large-area gallium arsenide nanowires using silicon dioxide nanoparticle mask. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 2449. [Google Scholar] [CrossRef]
- Baba, M.; Jia, T.; Suzuki, M.; Kuroda, H. Femtosecond Laser Induced Nanowire Technique and Its Applications. ISRN Nanotechnol. 2011, 2011, 907390. [Google Scholar] [CrossRef] [Green Version]
- Toor, F.; Miller, J.B.; Davidson, L.M.; Duan, W.; Jura, M.P.; Yim, J.; Forziati, J.; Black, M.R. Metal assisted catalyzed etched (MACE) black Si: Optics and device physics. Nanoscale 2016, 8, 15448–15466. [Google Scholar] [CrossRef]
- Duran, J.M.; Sarangan, A. Fabrication of ultrahigh aspect ratio silicon nanostructures using self-assembled gold metal-assisted chemical etching. J. Micro/Nanolithogr. MEMS MOEMS 2017, 16, 014502. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Coxon, P.R.; Peters, M.; Hoex, B.; Cole, J.M.; Fray, D.J. Black silicon: Fabrication methods, properties and solar energy applications. Energy Environ. Sci. 2014, 7, 3223–3263. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Xie, X.; Wang, Y.; Lian, B.; Zhang, G. A multi-step etch method for fabricating slightly tapered through-silicon vias based on modified Bosch process. Microsyst. Technol. 2019, 25, 2693–2698. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.K.; Han, S.J.; Lee, S. A novel top-down fabrication process for vertically-stacked silicon-nanowire array. Appl. Sci. 2020, 10, 1146. [Google Scholar] [CrossRef] [Green Version]
- Laermer, F.; Urban, A. MEMS at Bosch—Si plasma etch success story, history, applications, and products. Plasma Process. Polym. 2019, 16, 1–12. [Google Scholar] [CrossRef]
- Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087. [Google Scholar] [CrossRef]
- Garnett, E.C.; Brongersma, M.L.; Cui, Y.; McGehee, M.D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011, 41, 269–295. [Google Scholar] [CrossRef] [Green Version]
- Flick, J.; Rivera, N.; Narang, P. Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics 2018, 7, 1479–1501. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Hansen, P.A.S.; Du, K.; Gustavsen, K.R.; Liu, G.; Karlsen, F.; Nilsen, O.; Xue, C.; Wang, K. Black silicon with order-disordered structures for enhanced light trapping and photothermic conversion. Nano Energy 2019, 65, 103992. [Google Scholar] [CrossRef]
- Zhang, Z.; Martinsen, T.; Liu, G.; Tayyib, M.; Cui, D.; de Boer, M.J.; Karlsen, F.; Jakobsen, H.; Xue, C.; Wang, K. Ultralow Broadband Reflectivity in Black Silicon via Synergy between Hierarchical Texture and Specific-Size Au Nanoparticles. Adv. Opt. Mater. 2020, 8, 2000668. [Google Scholar] [CrossRef]
- Furube, A.; Hashimoto, S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: New dimensions in energy conversion and nanofabrication. NPG Asia Mater. 2017, 9, e454. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Zhai, T.; Sander, T.; Chen, L.; Klar, P.J. Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures. Nanoscale 2014, 6, 5099–5105. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Yao, Y.; Wu, J.; Niu, X.; Rogach, A.L.; Wang, Z. Effects of Plasmonic Metal Core-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Sci. Rep. 2017, 7, 7696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutzius, T.M.; Jung, S.; Maitra, T.; Graeber, G.; Köhme, M.; Poulikakos, D. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 2015, 527, 82–85. [Google Scholar] [CrossRef]
- Hao, C.; Li, J.; Liu, Y.; Zhou, X.; Liu, Y.; Liu, R.; Che, L.; Zhou, W.; Sun, D.; Li, L.; et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nat. Commun. 2015, 6, 7986. [Google Scholar] [CrossRef]
- Wei, W.; Zhu, Y.; Wang, N.; Mei, H.; Yin, S. Photothermal characteristics of novel flexible black silicon for solar thermal receiver. Int. J. Thermophys. 2012, 33, 2179–2184. [Google Scholar] [CrossRef]
- Ferraro, A.; Cerza, P.; Mussi, V.; Maiolo, L.; Convertino, A.; Caputo, R. Efficient Photothermal Generation by Nanoscale Light Trapping in a Forest of Silicon Nanowires. J. Phys. Chem. C 2021, 125, 25. [Google Scholar] [CrossRef]
- Liu, D.; Li, L.; Gao, Y.; Wang, C.; Jiang, J.; Xiong, Y. The nature of photocatalytic “water splitting” on silicon nanowires. Angew. Chem. Int. Ed. 2015, 54, 2980–2985. [Google Scholar] [CrossRef]
- Gaidi, M.; Daoudi, K.; Columbus, S.; Hajjaji, A.; Khakani, M.A.E.; Bessais, B. Enhanced photocatalytic activities of silicon nanowires/graphene oxide nanocomposite: Effect of etching parameters. J. Environ. Sci. 2021, 101, 123–134. [Google Scholar] [CrossRef]
- Soam, A.; Arya, N.; Singh, A.; Dusane, R. Fabrication of silicon nanowires based on-chip micro-supercapacitor. Chem. Phys. Lett. 2017, 678, 46–50. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Sun, T.; Wang, M.; Wu, C.; Zou, H.; Song, T.; Zhang, X.; Lee, S.T.; Wang, Z.L.; et al. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5%. Nano Lett. 2017, 17, 4240–4247. [Google Scholar] [CrossRef]
- Lu, P.; Müller, L.; Hoffmann, M.; Chen, X. Taper silicon nano-scaffold regulated compact integration of 1D nanocarbons for improved on-chip supercapacitor. Nano Energy 2017, 41, 618–625. [Google Scholar] [CrossRef]
- Li, L.; Tian, F.; Chang, H.; Zhang, J.; Wang, C.; Rao, W.; Hu, H. Interactions of Bacteria With Monolithic Lateral Silicon Nanospikes Inside a Microfluidic Channel. Front. Chem. 2019, 7, 483. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Lee, Y.T.; Zhang, R.Y.; Kao, R.; Teng, P.C.; Yang, Y.; Yang, P.; Wang, J.J.; Smalley, M.; Chen, P.J.; et al. Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat. Commun. 2020, 11, 4489. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, Y.; Li, Z.; Zhou, F.; Feng, K.; Dou, H.; Wang, T. Simultaneous detection of α-fetoprotein and carcinoembryonic antigen based on Si nanowire field-effect transistors. Sensors 2015, 15, 19225–19236. [Google Scholar] [CrossRef] [Green Version]
Main Steps in 1 Etching Loop | SF6 Gas Flow (sccm) | C4F8 Gas Flow (sccm) | ICP Power (W) | HF Power (W) | O2 Gas Flow (sccm) | Table Temperature (°C) | Pressure (mTorr) | Helium Backing (Torr) | Step Time (ms) |
---|---|---|---|---|---|---|---|---|---|
Pre-deposition | 10 | 200 | 1500 | 5 | 0 | 5 | 0 | 10 | 25 |
Deposition | 5 | 60 | 1250 | 5 | 0 | 5 | 20 | 10 | 550 |
Deposition Sub 1 | 20 | 60 | 1250 | 5 | 0 | 5 | 20 | 10 | 50 |
Deposition Sub 2 | 160 | 60 | 1250 | 5 | 0 | 5 | 30 | 10 | 100 |
Deposition Sub 3 | 160 | 5 | 2000 | 5 | 0 | 5 | 30 | 10 | 50 |
Deposition Sub 4 | 160 | 5 | 2000 | 60 | 0 | 5 | 30 | 10 | 50 |
Breakthrough | 200 | 5 | 2000 | 60 | 0 | 5 | 30 | 10 | 325 |
Breakthrough sub 1 | 200 | 5 | 2000 | 60 | 0 | 5 | 30 | 10 | 100 |
Breakthrough Sub 2 | 200 | 5 | 2500 | 60 | 0 | 5 | 80 | 10 | 50 |
Breakthrough Sub 3 | 200 | 5 | 2500 | 0 | 0 | 5 | 80 | 10 | 50 |
Etch | 500 | 5 | 2500 | 0 | 0 | 5 | 80 | 10 | 600 |
Etch Sub 1 | 1 | 120 | 2500 | 0 | 0 | 5 | 80 | 10 | 150 |
Etch Sub 2 | 5 | 120 | 1250 | 0 | 0 | 5 | 20 | 10 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, G.; Wang, K. Fabrication of Needle-Like Silicon Nanowires by Using a Nanoparticles-Assisted Bosch Process for Both High Hydrophobicity and Anti-Reflection. Micromachines 2021, 12, 1009. https://doi.org/10.3390/mi12091009
Zhang Z, Liu G, Wang K. Fabrication of Needle-Like Silicon Nanowires by Using a Nanoparticles-Assisted Bosch Process for Both High Hydrophobicity and Anti-Reflection. Micromachines. 2021; 12(9):1009. https://doi.org/10.3390/mi12091009
Chicago/Turabian StyleZhang, Zengxing, Guohua Liu, and Kaiying Wang. 2021. "Fabrication of Needle-Like Silicon Nanowires by Using a Nanoparticles-Assisted Bosch Process for Both High Hydrophobicity and Anti-Reflection" Micromachines 12, no. 9: 1009. https://doi.org/10.3390/mi12091009
APA StyleZhang, Z., Liu, G., & Wang, K. (2021). Fabrication of Needle-Like Silicon Nanowires by Using a Nanoparticles-Assisted Bosch Process for Both High Hydrophobicity and Anti-Reflection. Micromachines, 12(9), 1009. https://doi.org/10.3390/mi12091009