PEI-Functionalized Carbon Nanotube Thin Film Sensor for CO2 Gas Detection at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polyethyleneimine (PEI)-Functionalized Carbon Nanotube (CNT) Thin Film Sensor
2.2. Gas Sensor Measurement
3. Results and Discussion
3.1. Morphology of PEI-Functionalized CNT Thin Film
3.2. Raman Analysis of PEI-Functionalized CNT Thin Film
3.3. Fourier Transform Infrared (FT-IR) Analysis of PEI-Functionalized CNT Thin Film
3.4. Sensor Responses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, C.; Getz, P.; Kim, M.G.; Brand, O. Room temperature CO2 sensing based on interdigitated capacitors and resonant cantilevers. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1532–1535. [Google Scholar]
- Wang, H.; Vagin, S.I.; Rieger, B.; Meldrum, A. An ultrasensitive fluorescent paper-based CO2 sensor. ACS Appl. Mater. Interfaces 2020, 12, 20507–20513. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured materials for room temperature gas sensors. Adv. Mater. 2015, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, Z.; Li, Z.; Chen, B.; Ma, X.; Dong, I. Multifunctional graphene sensors for magnetic and hydrogen detection. ACS Appl. Mater. Interfaces 2015, 7, 9581–9588. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Y.; Xie, G.; Wu, M.; Tai, H. Gas sensors for CO2 detection based on RGO-PEI films at room temperature. Chin. Sci. Bull. 2014, 59, 1999–2005. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smulko, J.M. New approaches for improving selectivity and sensitivity of resistive gas sensors: A review. Sens. Rev. 2015, 35, 340–347. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas sening mechanisms of metal oxide semiconductors: A focus review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef]
- Hanafi, R.; Mayasari, R.D.; Raharjo, J.; Nuryadi, R. Electrochemical sensor for environmental monitoring system: A review. AIP Conf. Proc. 2019, 2169, 030007. [Google Scholar]
- Fang, Q.; Chetwynd, D.G.; Covington, J.A.; Toh, C.S.; Gardner, J.W. Micro-gas-sensor with conducting polymers. Sens. Actuators B Chem. 2002, 84, 66–71. [Google Scholar] [CrossRef]
- Shin, W.S.; Young, S.J.; Ji, L.W.; Water, W.; Meen, T.H.; Shiu, H.W. Effect of oxygen plasma treatment on characteristics of TiO2 photodetectors. IEEE Sens. J. 2011, 11, 3031–3035. [Google Scholar]
- Young, S.J. Photoconductive gain and noise properties of ZnO nanorods schottky barrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3801204. [Google Scholar]
- Rout, C.S.; Hegde, M.; Rao, C. H2S sensors based on tungsten oxide nanostructures. Sens. Actuators B Chem. 2008, 128, 488–493. [Google Scholar] [CrossRef]
- Reethirajan, S.; Jayas, D.S.; Sadistap, S. Carbon dioxide sensors for the agri-food industry—A review. Food Bioprocess Technol. 2009, 2, 115–121. [Google Scholar] [CrossRef]
- Tian, K.; Gerald, F.; Elfed, L.; Wang, X.; Liang, H.; Wang, P. A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating. Meas. Sci. Technol. 2018, 29, 085104. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Peng, H.; Liang, C.; Yao, S. A new assay system for phenacetin using biomimic bulk acoustic wave sensor with a molecularly imprinted polymer coating. Sens. Actuators B Chem. 2001, 73, 179–184. [Google Scholar] [CrossRef]
- Zee, F.; Judy, J. Micormachined polymer-based chemical gas sensor array. Sens. Actuators B Chem. 2001, 72, 120–128. [Google Scholar] [CrossRef]
- Afrin, R.; Shah, N.A. Room temperature gas sensors based on carboxyl and thiol functionalized carbon nanotubes buckypapers. Diam. Relat. Mater. 2015, 60, 42–49. [Google Scholar] [CrossRef]
- DeGraff, J.; Liang, R.; Le, M.Q.; Capsal, J.; Ganet, F.; Cottinet, P. Printable low-cost and flexible carbon nanotube buckypaper motion sensors. Mater. Des. 2017, 133, 47–53. [Google Scholar] [CrossRef]
- Misewich, J.A.; Martel, R.; Avouris, P.H.; Tsang, J.C.; Heinze, S.; Tersoff, J. Electrically Induced Optical Emission from a carbon nanotube FET. Science 2003, 300, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Franklin, N.; Zhou, C.; Chapline, M.; Peng, S.; Cho, K.; Dai, H. Nanotube Molecular Wires as Chemical Sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef]
- Star, A.; Han, T.; Joshi, V.; Gabriel, J.; Gruner, G. Nanoelectronic Carbon Dioxide sensors. Adv. Mater. 2004, 22, 2049–2052. [Google Scholar] [CrossRef]
- Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1859. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104. [Google Scholar] [CrossRef]
- Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble Carbon Nanotubes. Chem. Eur. J. 2003, 9, 4000–4008. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Kahn, M.G.C.; Wong, S.S. Rational Chemical Strategies for Carbon Nanotube Functionalization. Chem. Eur. J. 2003, 9, 1898–1908. [Google Scholar] [CrossRef]
- Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Performance and Properties of a Solid Amine Sorbent for Carbon Dioxide Removal in Space Life Support Applications. Energy Fuels 2001, 15, 250–255. [Google Scholar] [CrossRef]
- Dell’Amico, D.B.; Calderaz-zo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Converting Carbon Dioxide into Carbamato Derivatives. Chem. Rev. 2003, 103, 3857–3898. [Google Scholar] [CrossRef]
- Zhanga, H.; Liua, Y.; Kuwataa, M.; Bilottiab, E.; Peijs, T. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. Part A 2015, 70, 102–110. [Google Scholar] [CrossRef]
- Fennimore, A.; Cheng, L.; Roach, D. stable under-gate triode CNT field emitter fabricated via screen printing. Diam. Relat. Mater. 2008, 17, 2005–2009. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.; Yu, H.; Campbell, E.; Park, Y. Production of individual suspended single-walled carbon nanotubes using the ac electrophoresis technique. Appl. Phys. A 2004, 78, 283–286. [Google Scholar] [CrossRef]
- Dikonimos Makris, T.; Giorgi, L.; Giorgi, R.; Lisi, N.; Salernitano, E. CNT growth on alumina supported nickel catalyst by thermal CVD. Diam. Relat. Mater. 2005, 14, 815–819. [Google Scholar] [CrossRef]
- Lu, S.; Chen, D.; Wang, X.; Shao, J.; Ma, K.; Zhang, L.; Araby, S.; Meng, Q. Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor. Compos. Sci. Technol. 2017, 152, 181–189. [Google Scholar] [CrossRef]
- Rein, M.D.; Breuer, O.; Wagner, H.D. Sensors and sensitivity: Carbon nanotube buckypaper films as strain sensing devices. Colloid Surf. B-Biointerfaces 2017, 160, 493–499. [Google Scholar] [CrossRef]
- Lu, H.; Hang, A.; Zhang, Y.; Ding, L.; Zheng, Y. The effect of polymer polarity on the microwave absorbing properties of MWNTs. RSC Adv. 2015, 5, 64925–64931. [Google Scholar] [CrossRef]
- Zhao, Q.; Daniel Wagner, H. Raman spectroscopy of carbon–nanotube–based composites. Phil. Trans. R. Soc. Lond. A 2004, 362, 2407–2424. [Google Scholar] [CrossRef]
- Zaaeri, F.; Khoobi, M.; Rouini, M.; Akbari Javar, H. pH-responsive polymer in a core–shell magnetic structure as an efficient carrier for delivery of doxorubicin to tumor cells. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 967–977. [Google Scholar] [CrossRef]
- Li, K.; Zhang, C.; Du, Z.; Li, H.; Zou, W. Preparation of humidity-responsive antistatic carbon nanotube/PEI nanocomposites. Synth. Met. 2012, 162, 2010–2015. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Zou, J.; Wang, X.; Sun, L.; Wang, T.; Zhang, Q. Functionalized horizontally aligned CNT array and random CNT network for CO2 sensing. Carbon 2017, 117, 263–270. [Google Scholar] [CrossRef]
- Siefker, Z.A.; Boyina, A.; Braun, J.E.; Zhao, X.; Boudouris, B.W.; Bajaj, N.; Chiu, G.; Rhoads, J. A Chemiresistive CO2 Sensor Based on CNT-Functional Polymer Composite Films. IEEE Sens. 2020. [Google Scholar] [CrossRef]
- Sun, B.; Xie, G.; Jiang, Y.; Li, X. Comparative CO2-sensing Characteristic studies of PEI and PEI/Starch Thin Film Sensors. Energy Procedia 2011, 12, 726–732. [Google Scholar] [CrossRef] [Green Version]
- Shim, M.; Javey, A.; Wong, N.; Kam, S.; Dai, H. Polymer Functionalization for Air-Stable n-Type Carbon Nanotube Field-Effect Transistors. J. Am. Chem. Soc. 2001, 123, 11512–11513. [Google Scholar] [CrossRef] [PubMed]
- Son, M.; Pak, Y.; Chee, S.; Auxilia, F.M.; Kim, K.; Lee, B.; Lee, S.; Kang, S.K.; Lee, C.; Lee, J.S.; et al. Charge transfer in graphene/polymer interfaces for CO2 detection. Nano Res. 2018, 11, 3529–3536. [Google Scholar] [CrossRef]
- Yoon, B.; Choi, S.J.; Swager, T.M.; Walsh, G.F. Switchable single-walled carbon nanotube–polymer composites for CO2 sensing. ACS Appl. Mater. Interfaces 2018, 10, 33373–33379. [Google Scholar] [CrossRef]
- Han, M.; Kim, J.; Kang, S.; Jung, D. Post-treatment effects on the gas sensing performance of carbon nanotube sheet. Appl. Surf. Sci. 2019, 481, 597–603. [Google Scholar] [CrossRef]
- Xial, Z.; Kong, L.B.; Ruan, S.; Li, X.; Yu, S.; Li, X.; Jiang, Y.; Yao, Z.; Ye, S.; Wang, C.; et al. Recent development in nanocarbon materials for gas sensor applications. Sens. Actuator B. Chem. 2018, 274, 235–267. [Google Scholar]
- Wang, Y.; Yeow, J.T.W. A review of carbon nanotube-based gas sensor. J. Sens. 2009, 2009, 493904. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Chu, M.; Khine, M. Highly Flexible Wrinkled Carbon Nanotube Thin Film Strain Sensor to Monitor Human Movement. Adv. Mater. Technol. 2016, 1, 1600053. [Google Scholar] [CrossRef] [Green Version]
- Kanaparthi, S.; Singh, S.G. Chemiresistive sensor based on zinc oxide nanoflakes for CO2 detection. ACS Appl. Nano Mater. 2019, 2, 700–706. [Google Scholar] [CrossRef]
- Thomas, T.; Kumar, Y.; Ramón, J.A.R.; Agarwal, V.; Guzmán, S.S.; Reshmi, R.; Sanal, K.C. Porous silicon/α-MoO3 nanohybrid based fast and highly sensitive CO2 gas sensors. Vacuum 2021, 184, 109983. [Google Scholar] [CrossRef]
- Chiang, C.J.; Tsai, K.T.; Lee, Y.H.; Lin, H.W.; Yang, Y.L.; Shih, C.C.; Dai, C.A. In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor. Microelectron. Eng. 2013, 111, 409–415. [Google Scholar] [CrossRef]
- Willa, C.; Schmid, A.; Briand, D.; Yuan, J.; Koziej, D. Lightweight, Room-Temperature CO2 Gas Sensor Based on Rare-Earth Metal-Free Composites An Impedance Study. ACS Appl. Mater. Interfaces 2017, 9, 25553–25558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.D.; Young, S.J.; Chang, S.J. CO2 gas sensors based on carbon nanotube thin films using a simple transfer method on flexible substrate. IEEE Sens. J. 2015, 15, 7017–7020. [Google Scholar] [CrossRef]
Materials | Type of Sensor | Gas Concentration (ppm) | Sensitivity (ΔR/R) | Operating Temperature (°C) | Flexibility | Reference |
---|---|---|---|---|---|---|
ZnO | Chemiresistor | 200–1025 | 2.3 | 250 | - | [49] |
Porous silicon/α-MoO3 | Chemiresistor | 50–150 | 15 | 250 | - | [50] |
PEDOT-BPEI | Chemiresistor | 1000 | 2.7 | Room tem. | - | [51] |
PIL-Al2O3 | Chemiresistor | 150–2400 | 1.7 | Room tem. | - | [52] |
CNT | Chemiresistor | 50–800 | 2.25 | Room tem. | Flexible | [53] |
PEI-CNT | Chemiresistor | 200–1000 | 4.2 | Room tem. | Flexible | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Jung, S.; Lee, Y.; Jung, D.; Kong, S.H. PEI-Functionalized Carbon Nanotube Thin Film Sensor for CO2 Gas Detection at Room Temperature. Micromachines 2021, 12, 1053. https://doi.org/10.3390/mi12091053
Han M, Jung S, Lee Y, Jung D, Kong SH. PEI-Functionalized Carbon Nanotube Thin Film Sensor for CO2 Gas Detection at Room Temperature. Micromachines. 2021; 12(9):1053. https://doi.org/10.3390/mi12091053
Chicago/Turabian StyleHan, Maeum, Soonyoung Jung, Yeonsu Lee, Daewoong Jung, and Seong Ho Kong. 2021. "PEI-Functionalized Carbon Nanotube Thin Film Sensor for CO2 Gas Detection at Room Temperature" Micromachines 12, no. 9: 1053. https://doi.org/10.3390/mi12091053
APA StyleHan, M., Jung, S., Lee, Y., Jung, D., & Kong, S. H. (2021). PEI-Functionalized Carbon Nanotube Thin Film Sensor for CO2 Gas Detection at Room Temperature. Micromachines, 12(9), 1053. https://doi.org/10.3390/mi12091053