Editorial for the Special Issue on Semiconductor Infrared Devices and Applications
Funding
Conflicts of Interest
References
- Schettino, E. A new instrument for infrared radiation measurements: The thermopile of Macedonio Melloni. Ann. Sci. 1989, 46, 511–517. [Google Scholar] [CrossRef]
- Putley, E.H.; Arthur, J.B. Lead Sulphide—An Intrinsic Semiconductor. Proc. Phys. Soc. Sect. B 1951, 64, 616–618. [Google Scholar] [CrossRef]
- Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 2012, 20, 279–308. [Google Scholar] [CrossRef]
- Coon, D.D.; Karunasiri, R.P.G. New mode of IR detection using quantum wells. Appl. Phys. Lett. 1984, 45, 649. [Google Scholar] [CrossRef]
- Levine, B.F. Quantum-well infrared photodetectors. J. Appl. Phys. 1993, 74, R1–R81. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Mi, Z. Quantum-Dot Optoelectronic Devices. Proc. IEEE 2007, 95, 1723–1740. [Google Scholar] [CrossRef]
- Razeghi, M.; Esaki, L.; von Klitzing, K. (Eds.) The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications; SPIE: Bellingham, WA, USA, 2013; pp. 1–893. [Google Scholar]
- Smith, D.L.; Mailhiot, C. Proposal for strained type II superlattice infrared detectors. J. Appl. Phys. 1987, 62, 2545–2548. [Google Scholar] [CrossRef]
- Ting, D.Z.-Y.; Soibel, A.; Höglund, L.; Nguyen, J.; Hill, C.J.; Khoshakhlagh, A.; Gunapala, S.D. Type-II Superlattice Infrared Detectors. In Semiconductors and Semimetals; Elsevier BV: Amsterdam, The Netherlands, 2011; Volume 84, pp. 1–57. [Google Scholar]
- Perera, A. Heterojunction and superlattice detectors for infrared to ultraviolet. Prog. Quantum Electron. 2016, 48, 1–56. [Google Scholar] [CrossRef] [Green Version]
- Szmulowicz, F.; Madarasz, F.L. Blocked impurity band detectors—An analytical model: Figures of merit. J. Appl. Phys. 1987, 62, 2533–2540. [Google Scholar] [CrossRef]
- Lao, Y.F.; Perera, A.U.; Li, L.H.; Khanna, S.P.; Linfield, E.H.; Liu, H.C. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nat. Photonics 2014, 8, 412–418. [Google Scholar] [CrossRef]
- Talghader, J.J.; Gawarikar, A.S.; Shea, R.P. Spectral selectivity in infrared thermal detection. Light. Sci. Appl. 2012, 1, e24. [Google Scholar] [CrossRef] [Green Version]
- Perera, A.G.U. (Ed.) Bolometers; IntechOpen: Rijeka, Croatia, 2012; ISBN 978-953-81-0235-09. [Google Scholar] [CrossRef]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Haertelt, M.; Niemasz, J.; Schwarz, K.; Daumer, V.; Flores, Y.V.; Ostendorf, R.; Rehm, R. Thermoelectrically-Cooled InAs/GaSb Type-II Superlattice Detectors as an Alternative to HgCdTe in a Real-Time Mid-Infrared Backscattering Spectroscopy System. Micromachines 2020, 11, 1124. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lu, Z.; Zhao, K. Manganite Heterojunction Photodetector with Broad Spectral Response Range from 200 nm to 2 μm. Micromachines 2020, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariyawansa, G.; Duran, J.; Reyner, C.; Scheihing, J. InAs/InAsSb Strained-Layer Superlattice Mid-Wavelength Infrared Detector for High-Temperature Operation. Micromachines 2019, 10, 806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, D.Z.; Rafol, S.B.; Khoshakhlagh, A.; Soibel, A.; Keo, S.A.; Fisher, A.M.; Pepper, B.J.; Hill, C.J.; Gunapala, S.D. InAs/InAsSb Type-II Strained-Layer Superlattice Infrared Photodetectors. Micromachines 2020, 11, 958. [Google Scholar] [CrossRef] [PubMed]
- Göktaş, H.; Gökhan, F.S. Analysis and Simulation of Forcing the Limits of Thermal Sensing for Microbolometers in CMOS–MEMS Technology. Micromachines 2019, 10, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manwar, R.; Kratkiewicz, K.; Avanaki, K. Overview of Ultrasound Detection Technologies for Photoacoustic Imaging. Micromachines 2020, 11, 692. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, H.; Jayaweera, P.V.V.; Somvanshi, D.; Lao, Y.; Perera, A.G.U. Recent Progress on Extended Wavelength and Split-Off Band Heterostructure Infrared Detectors. Micromachines 2020, 11, 547. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, A.G.U. Editorial for the Special Issue on Semiconductor Infrared Devices and Applications. Micromachines 2021, 12, 1069. https://doi.org/10.3390/mi12091069
Perera AGU. Editorial for the Special Issue on Semiconductor Infrared Devices and Applications. Micromachines. 2021; 12(9):1069. https://doi.org/10.3390/mi12091069
Chicago/Turabian StylePerera, A. G. Unil. 2021. "Editorial for the Special Issue on Semiconductor Infrared Devices and Applications" Micromachines 12, no. 9: 1069. https://doi.org/10.3390/mi12091069
APA StylePerera, A. G. U. (2021). Editorial for the Special Issue on Semiconductor Infrared Devices and Applications. Micromachines, 12(9), 1069. https://doi.org/10.3390/mi12091069