Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures
Abstract
:1. Introduction
2. Design and Simulation
3. Fabrication and Test Results of PEH
4. Optimize Test Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.B.; Dong, B.; Lee, C. Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 2020, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Nechibvute, A.; Chawanda, A.; Luhanga, P. Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors. Smart Mater. Res. 2012, 2012, 853481. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Ng, T.H.; Liao, W.H. Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor. J. Intell. Mater. Syst. Struct. 2005, 16, 785–797. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, R.; Singh, D. Energy harvesting in wireless sensor networks: A taxonomic survey. Int. J. Energy Res. 2021, 45, 118–140. [Google Scholar] [CrossRef]
- Shabara, M.; Badawi, A.R.; Xu, T.B. Comprehensive piezoelectric material application issues on energy harvesting for artificial intelligence systems. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1862. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2020, 80, 105567. [Google Scholar] [CrossRef]
- Aabid, A.; Raheman, M.A.; Ibrahim, Y.E.; Anjum, A.; Hrairi, M.; Parveez, B.; Parveen, N.; Zayan, J.M. A Systematic Review of Piezoelectric Materials and Energy Harvesters for Industrial Applications. Sensors 2021, 21, 4145. [Google Scholar] [CrossRef]
- Hooper, T.E.; Roscow, J.I.; Mathieson, A.; Khanbareh, H.; Goetzee-Barral, A.J. High voltage coefficient piezoelectric materials and their applications. J. Eur. Ceram. Soc. 2021, 41, 13. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, Y.; Dou, S.X.; Liang, J. Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Mater. Today Energy 2021, 20, 100690. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Y.; Wang, X.; Liu, J.Q.; Chen, X.; Yang, C. High performance PZT thick films based on bonding technique for d31 mode harvester with integrated proof mass. Sens. Actuators A Phys. 2014, 214, 88–94. [Google Scholar] [CrossRef]
- Li, Y.G.; Sun, J.; Liu, J.Q.; Yang, C.S.; He, D.N.; Tanaka, K.; Sugiyama, S. Evaluation of properties of lapped PZT ceramics and silicon cantilever based on eutectic bonding and dicing process. In Materials Science Forum; Trans Tech Publ. Ltd.: Stafa-Zurich, Switzerland, 2011; Volume 663, pp. 999–1003. [Google Scholar]
- Qabur, A.; Alshammari, K. A systematic review of energy harvesting from roadways by using piezoelectric materials technology. Innov. Energy Res. 2018, 7, 1–6. [Google Scholar] [CrossRef]
- Al-Yafeai, D.; Darabseh, T.; Mourad, A.H.I. A state-of-the-art review of car suspension-based piezoelectric energy harvesting systems. Energies 2020, 13, 2336. [Google Scholar] [CrossRef]
- Yi, Z.; Yang, B.; Zhang, W.; Wu, Y.; Liu, J. Batteryless tire pressure real-time monitoring system driven by an ultralow frequency piezoelectric rotational energy harvester. IEEE Trans. Ind. Electron. 2020, 68, 3192–3201. [Google Scholar] [CrossRef]
- Liu, H.; Geng, J.; Zhu, Q.; Zhang, L.; Wang, F.; Chen, T.; Sun, L. Flexible ultrasonic transducer array with bulk PZT for adjuvant treatment of bone injury. Sensors 2020, 20, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkmen, A.C.; Celik, C. Energy harvesting with the piezoelectric material integrated shoe. Energy 2018, 150, 556–564. [Google Scholar] [CrossRef]
- Zhu, M.; Shi, Q.; He, T.; Yi, Z.; Ma, Y.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lü, C.; Lu, B.; Feng, X.; Wang, J. Effects of Orientations on Efficiency of Energy Harvesting from Heart Motion Using Ultrathin Flexible Piezoelectric Devices. Adv. Theory Simul. 2019, 2, 1900050. [Google Scholar] [CrossRef]
- Li, N.; Yi, Z.; Ma, Y.; Xie, F.; Huang, Y.; Tian, Y.; Dong, X.; Liu, Y.; Shao, X.; Li, Y.; et al. Direct powering a real cardiac pacemaker by natural energy of a heartbeat. ACS Nano 2019, 13, 2822–2830. [Google Scholar] [CrossRef]
- Koyuncuoğlu, A.; İlik, B.; Chamanian, S.; Uluşan, H.; Ashrafi, P.; Işık, D.; Külah, H. Bulk PZT cantilever based MEMS acoustic transducer for cochlear implant applications. Multidiscip. Digit. Publ. Inst. Proc. 2017, 1, 584. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.X.; Zhang, W.M.; Li, W.B.; Hu, K.M.; Wei, K.X.; Peng, Z.K.; Meng, G. A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach. Appl. Phys. Lett. 2017, 110, 163904. [Google Scholar] [CrossRef]
- Dong, X.; Yi, Z.; Kong, L.; Tian, Y.; Liu, J.; Yang, B. Design, fabrication, and characterization of bimorph micromachined harvester with asymmetrical PZT films. J. Microelectromech. Syst. 2019, 28, 700–706. [Google Scholar] [CrossRef]
- Nabavi, S.; Zhang, L. T-shaped piezoelectric structure for high-performance MEMS vibration energy harvesting. J. Microelectromech. Syst. 2019, 28, 1100–1112. [Google Scholar] [CrossRef]
- Hajheidari, P.; Stiharu, I.; Bhat, R. Performance of non-uniform functionally graded piezoelectric energy harvester beams. J. Intell. Mater. Syst. Struct. 2020, 31, 1604–1616. [Google Scholar] [CrossRef]
- Nisanth, A.; Suja, K.J.; Seena, V. Design and optimization of MEMS piezoelectric energy harvester for low frequency applications. Microsyst. Technol. 2021, 27, 251–261. [Google Scholar] [CrossRef]
- Jin, L.; Gao, S.; Zhang, X.; Wu, Q. Output of MEMS piezoelectric energy harvester of double-clamped beams with different width shapes. Materials 2020, 13, 2330. [Google Scholar] [CrossRef] [PubMed]
Structure | Substrate Layer | Piezoelectric Layer | Mass | Electrode Layer | |
---|---|---|---|---|---|
Material | Stainless steel | Brass | PZT-7 | Wu | Ag |
Young’s modulus (GPa) | 200 | 112 | - | 411 | 83 |
Density (kg/m3) | 7850 | 8960 | 7800 | 19,350 | 10,500 |
Poisson’s ratio | 0.30 | 0.34 | 0.36 | 0.28 | 0.37 |
Types | Triangle Hole | Rectangular Hole | Trapezoidal Hole |
---|---|---|---|
Upper bottom (mm) | 3 | 3 | 3 |
Lower bottom (mm) | 0 | 3 | 4 |
Height (mm) | 12.5 | 12.5 | 12.5 |
Hole area (mm2) | 18.75 | 37.5 | 43.75 |
Types of PEHs | Acceleration (g) | Resonant Frequency (Hz) | Effective Volume (mm3) | Optimal Load Resistance (kΩ) | Max. Power Density (mW/cm3) |
---|---|---|---|---|---|
Steel-based Prototype | 0.5 | 64 | 143.2 | 50.3 | 1.788 |
Brass-based Prototype | 0.5 | 61 | 143.2 | 72.8 | 2.026 |
Triangle hole | 0.5 | 59 | 135.7 | 91 | 2.041 |
Rectangular hole | 0.5 | 57.9 | 128.2 | 106 | 2.182 |
Trapezoidal hole | 0.5 | 56.3 | 125.7 | 114 | 2.520 |
1.5 | 8.932 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, C.; Lai, L.; Dong, X.; Li, Y. Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures. Micromachines 2021, 12, 1090. https://doi.org/10.3390/mi12091090
Wang B, Zhang C, Lai L, Dong X, Li Y. Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures. Micromachines. 2021; 12(9):1090. https://doi.org/10.3390/mi12091090
Chicago/Turabian StyleWang, Baozhi, Chenggong Zhang, Liyan Lai, Xuan Dong, and Yigui Li. 2021. "Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures" Micromachines 12, no. 9: 1090. https://doi.org/10.3390/mi12091090
APA StyleWang, B., Zhang, C., Lai, L., Dong, X., & Li, Y. (2021). Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures. Micromachines, 12(9), 1090. https://doi.org/10.3390/mi12091090