The Fabrication and Indentation of Cubic Silicon Carbide Diaphragm for Acoustic Sensing
Abstract
:1. Introduction
2. Fabrication of Freestanding Diaphragms
3. Nanoindentation of Diaphragms
4. Results and Analysis
4.1. Influence of the Size of the Diaphragm
4.2. Influence of the Location of Indentation
4.3. Determining the Cause of Burst Diaphragm
4.4. Load-Displacement Curve for Elastic Diaphragm
4.5. Suitability of Elastic Diaphragm as Acoustic Sensor
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehregany, M.; Zorman, C.A. Silicon carbide MEMS for harsh environments. Proc. IEEE 1998, 86, 1594–1609. [Google Scholar] [CrossRef]
- Cheng, G.; Chang, T.-H.; Qin, Q.; Huang, H.; Zhu, Y. Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density. Nano Lett. 2014, 14, 754–758. [Google Scholar] [CrossRef]
- Ma, S.; Wang, S.; Iacopi, F.; Huang, H. A resonant method for determining the residual stress and elastic modulus of a thin film. Appl. Phys. Lett. 2013, 103, 031603. [Google Scholar] [CrossRef] [Green Version]
- Marsi, N.; Majlis, B.Y.; Hamzah, A.A.; Mohd-Yasin, F. High reliability of MEMS packaged capacitive pressure sensor employing 3C-SiC for high temperature. Energy Procedia 2015, 68, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Beaber, A.; Nowak, J.; Ugurlu, O.; Mook, W. Smaller is tougher. Philos. Mag. 2011, 91, 1179–1189. [Google Scholar] [CrossRef]
- Arzt, E. Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 1998, 46, 5611–5626. [Google Scholar] [CrossRef] [Green Version]
- Greer, J.R.; Th, J.; De Hosson, M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 2011, 56, 654–724. [Google Scholar] [CrossRef]
- Treml, R.; Kozic, D.; Schöngrundner, R.; Kolednik, O.; Gänser, H.-P. Miniaturized fracture experiments to determine the toughness of individual films in a multilayer system. Extreme Mech. Lett. 2016, 8, 235–244. [Google Scholar] [CrossRef]
- Namazu, T.; Isono, Y.; Tanaka, T. Nano-scale bending test of Si beam for MEMS. In Proceedings of the IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, 23–27 January 2000; pp. 205–210. [Google Scholar] [CrossRef]
- Grutzik, S.J.; Milosevic, E.; Boyce, B.L.; Zehnder, A.T. Oxide driven strength evolution of silicon surfaces. J. Appl. Phys. 2015, 118, 195304. [Google Scholar] [CrossRef]
- Espinosa, H.; Prorok, B.; Fischer, M. A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 2003, 51, 47–67. [Google Scholar] [CrossRef]
- Berdova, M.; Ylivaara, O.M.E.; Rontu, V.; Puurunen, R.L.; Franssila, S. Fracture properties of atomic layer deposited aluminum oxide free-standing membranes. J. Vac. Sci. Technol. A 2015, 33, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Boé, A.; Safi, A.; Coulombier, M.; Pardoen, T.; Raskin, J.-P. Internal stress relaxation based method for elastic stiffness characterization of very thin films. Thin Solid Films 2009, 518, 260–264. [Google Scholar] [CrossRef]
- Oliver, W.C. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Merle, B.; Nicholson, K.S.; Herbert, E.G.; Göken, M. An improved method for point deflection measurements on rectangular membranes. Mater. Des. 2016, 109, 485–491. [Google Scholar] [CrossRef]
- Ozaki, T.; Koga, T.; Fujitsuka, N.; Makino, H.; Hohjo, H. Biaxial flexure testing of free-standing thin film membrane with nanoindentation system. Sens. Actuators A Phys. 2018, 278, 48–59. [Google Scholar] [CrossRef]
- Ashrafi, B.; Das, K.; Le Faive, R.; Hubert, P.; Vengallatore, S. Measuring the Elastic Properties of Freestanding Thick Films Using a Nanoindenter-Based Bending Test. Exp. Mech. 2012, 52, 371–378. [Google Scholar] [CrossRef]
- Pecholt, B.; Molian, P. Nanoindentation of laser micromachined 3C-SiC thin film micro-cantilevers. Mater. Des. 2011, 32, 3414–3420. [Google Scholar] [CrossRef]
- Hayun, S.; Paris, V.; Mitrani, R.; Kalabukhov, S.; Dariel, M.; Zaretsky, E.; Frage, N. Microstructure and mechanical properties of silicon carbide processed by Spark Plasma Sintering (SPS). Ceram. Int. 2012, 38, 6335–6340. [Google Scholar] [CrossRef]
- Magnani, G.; Minoccari, G.; Pilotti, L. Flexural strength and toughness of liquid phase sintered silicon carbide. Ceram. Int. 2000, 26, 495–500. [Google Scholar] [CrossRef]
- Gubernat, A.; Stobierski, L.; Łabaj, P. Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives. J. Eur. Ceram. Soc. 2007, 27, 781–789. [Google Scholar] [CrossRef]
- Zawawi, S.A.; Hamzah, A.A.; Majlis, B.Y.; Mohd-Yasin, F. A Review of MEMS Capacitive Microphones. Micromachines 2020, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Zawawi, S.A.; Hamzah, A.A.; Majlis, B.Y.; Mohd-Yasin, F. Nano-indentation of cubic silicon carbide on silicon film. Jpn. J. Appl. Phys. 2019, 58, 051006. [Google Scholar] [CrossRef]
- Wang, L.; Dimitrijev, S.; Han, J.; Iacopi, A.; Hold, L.; Tanner, P.; Harrison, H.B. Growth of 3C-SiC on 150-mm Si(100) substrates by alternating supply epitaxy at 1000 °C. Thin Solid Films 2011, 519, 6443–6446. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Dimitrijev, S.; Fissel, A.; Walker, G.; Chai, J.; Hold, L.; Fernandes, A.; Nguyen, N.-T.; Iacopi, A. Growth mechanism for alternating supply epitaxy: The unique pathway to achieve uniform silicon carbide films on multiple large-diameter silicon substrates. RSC Adv. 2016, 6, 16662–16667. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Dimitrijev, S.; Han, J.; Tanner, P.; Iacopi, A.; Hold, L. Demonstration of p-type 3C-SiC grown on 150 mm Si(100) substrates by atomic-layer epitaxy at 1000 °C. J. Cryst. Growth 2011, 329, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Marsi, N.; Majlis, B.Y.; Mohd-Yasin, F.; Hamzah, A.A. The fabrication of back etching 3C-SiC-on-Si diaphragm employing KOH + IPA in MEMS capacitive pressure sensor. Microsyst. Technol. 2014, 21, 1651–1661. [Google Scholar] [CrossRef]
- Vachhani, S.; Doherty, R.; Kalidindi, S. Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation. Acta Mater. 2013, 61, 3744–3751. [Google Scholar] [CrossRef]
- Zhao, X.; Langford, R.M.; Shapiro, I.P.; Xiao, P. Onset Plastic Deformation and Cracking Behavior of Silicon Carbide under Contact Load at Room Temperature. J. Am. Ceram. Soc. 2011, 94, 3509–3514. [Google Scholar] [CrossRef]
- Suresh, S.; Nieh, T.-G.; Choi, B. Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 1999, 41, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Gouldstone, A.; Giannakopoulos, A. Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 2000, 48, 2277–2295. [Google Scholar] [CrossRef]
- Zawawi, S.A.; Hamzah, A.A.; Selvarajan, R.S.; Majlis, B.Y.; Mohd-Yasin, F. Dynamic Behavior of Condenser Microphone Under the Influence of Squeeze Film Damping. In Proceedings of the 2018 IEEE International Conference on Semiconductor Electronics (ICSE 2018), Kuala Lumpur, Malaysia, 15–17 August 2018; pp. 104–108. [Google Scholar] [CrossRef]
- Zawawi, S.A.; Hamzah, A.A.; Majlis, B.Y.; Mohd-Yasin, F. Mechanical analysis of condenser microphone based on silicon carbide diaphragm for sonic detection. In Proceedings of the 2016 IEEE International Conference on Semiconductor Electronics (ICSE 2016), Kuala Lumpur, Malaysia, 17–19 August 2016; pp. 25–28. [Google Scholar] [CrossRef]
- Zawawi, S.A.; Hamzah, A.A.; Mohd-Yasin, F.; Majlis, B.Y. Mechanical performance of SiC based MEMS capacitive microphone for ultrasonic detection in harsh environment. Nanoeng. Fabr. Prop. Opt. Devices XIV 2017, 10354, 55. [Google Scholar] [CrossRef] [Green Version]
- Ravula, S.R.; Narasimman, S.C.; Wang, L.; Ukil, A. Experimental Validation of Leak and Water-Ingression Detection in Low-Pressure Gas Pipeline Using Pressure and Flow Measurements. IEEE Sens. J. 2017, 17, 6734–6742. [Google Scholar] [CrossRef]
- Huang, X.; Li, W.; Li, B.; Jiang, T.; Fang, T.; Zhang, B.; Yang, Y.; Kruezi, U.; Maruyama, S. Leak detection design for ITER GIS gas fueling manifold. Fusion Eng. Des. 2019, 146, 1769–1772. [Google Scholar] [CrossRef]
- Yasin, F.; Tye, K.; Reaz, M. Design and implementation of interface circuitry for CMOS-based saw gas sensors. In Proceedings of the 2005 IEEE International SOC Conference (IEEE SOCC), Herndon, VA, USA, 25–28 September 2005; pp. 161–164. [Google Scholar] [CrossRef] [Green Version]
- Mohd-Yasin, F.; Khaw, M.K.; Reaz, M.B.I. Techniques of RFID Systems: Architecture and Applications. Microw. J. 2006, 49, 62. [Google Scholar]
Sample Number | Side Length (µm) | Indent Location | Max Load (mN) | Displacement * (µm) |
---|---|---|---|---|
1 | 2300 | Center | 10 | 20.048 |
2 | 1800 | Center | 10 | 17.673 |
3 | 1300 | Center | 3 | 20.979 |
4 | 1300 | Edge | 3 | 4.801 |
5 | 1300 | Center | 1.5 | 9.474 |
6 | 1300 | Center | 1.5 | 11.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawawi, S.A.; Hamzah, A.A.; Majlis, B.Y.; Mohd-Yasin, F. The Fabrication and Indentation of Cubic Silicon Carbide Diaphragm for Acoustic Sensing. Micromachines 2021, 12, 1101. https://doi.org/10.3390/mi12091101
Zawawi SA, Hamzah AA, Majlis BY, Mohd-Yasin F. The Fabrication and Indentation of Cubic Silicon Carbide Diaphragm for Acoustic Sensing. Micromachines. 2021; 12(9):1101. https://doi.org/10.3390/mi12091101
Chicago/Turabian StyleZawawi, Siti Aisyah, Azrul Azlan Hamzah, Burhanuddin Yeop Majlis, and Faisal Mohd-Yasin. 2021. "The Fabrication and Indentation of Cubic Silicon Carbide Diaphragm for Acoustic Sensing" Micromachines 12, no. 9: 1101. https://doi.org/10.3390/mi12091101
APA StyleZawawi, S. A., Hamzah, A. A., Majlis, B. Y., & Mohd-Yasin, F. (2021). The Fabrication and Indentation of Cubic Silicon Carbide Diaphragm for Acoustic Sensing. Micromachines, 12(9), 1101. https://doi.org/10.3390/mi12091101