A Low Cost Fe3O4–Activated Biochar Electrode Sensor by Resource Utilization of Excess Sludge for Detecting Tetrabromobisphenol A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Fe3O4-activated Biochar
2.3. Characterization Measurements
2.4. Electrode’s Construction and Detection
3. Results and Discussion
3.1. Characterization of Synthesized Materials
3.2. EIS Characterization of Fe3O4–Activated Biochar/GC
3.3. Electrochemical Behavior of TBPPA on Fe3O4–Activated Biochar/GC
3.4. Optimization of Experimental Parameters
3.5. Electrochemical Determination of TBPPA
3.6. Reproducibility, Interferences and Real Samples Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Levy-Bimbot, M.; Major, G.; Courilleau, D.; Blondeau, J.P.; Levi, Y. Tetrabromobisphenol-A disrupts thyroid hormone receptor alpha function in vitro: Use of fluorescence polarization to assay corepressor and coactivator peptide binding. Chemosphere 2012, 87, 782–788. [Google Scholar] [CrossRef]
- Liu, K.; Li, J.; Yan, S.; Zhang, W.; Li, Y.; Han, D. A review of status of tetrabromobisphenol A (TBBPA) in China. Chemosphere 2016, 148, 8–20. [Google Scholar] [CrossRef]
- Shi, Z. Legacy and novel brominated flame retardants in indoor dust from Beijing, China: Occurrence, human exposure assessment and evidence for PBDEs replacement. Sci. Total Environ. 2017, 618, 48. [Google Scholar]
- der Ven, L.T.M.V.; de Kuil, T.V.; Verhoef, A.; Verwer, C.M.; Lilienthal, H.; Leonards, P.E.G.; Schauer, U.M.D.; Cantón, R.F.; Litens, S.; De Jong, F.H.; et al. Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar rats as tested in a one-generation reproduction study and a subacute toxicity study. Toxicology 2008, 245, 76–89. [Google Scholar] [CrossRef]
- Wu, M.; Wang, X.; Shan, J.; Zhou, H.; Liu, L. Sensitive and Selective Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole Hybrid Nanocomposites for Tetrabromobisphenol A Detection. Anal. Lett. 2019, 52, 1–18. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Guo, Y.; Yang, Y. Determination of bisphenol-A, 2,4-dichlorophenol, bisphenol-AF and tetrabromobisphenol-A in liquid foods and their packaging materials by vortex-assisted supramolecular solvent microextraction/high-performance liquid chromatography. Anal. Methods 2013, 5, 5037–5043. [Google Scholar] [CrossRef]
- Barrett, C.A.; Orban, D.A.; Seebeck, S.E.; Lowe, L.E.; Owens, J.E. Development of a Low-Density-Solvent Dispersive Liquid–Liquid Microextraction with Gas Chromatography and Mass Spectrometry Method for the Quantitation of Tetrabromobisphenol-A from Dust. J. Sep. Sci. 2015, 38, 2503–2509. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Oliveira, C.; Fernandes, J.O. Development of QuEChERS-based extraction and liquid chromatography-tandem mass spectrometry method for simultaneous quantification of bisphenol A and tetrabromobisphenol A in seafood: Fish, bivalves, and seaweeds. Anal. Bioanal. Chem. 2017, 409, 1–10. [Google Scholar] [CrossRef]
- Qiang, Z.; Wu, W.; Wei, X.; Jiang, S.; Tong, Z.; Li, Q.; Lu, Q. Graphitic carbon nitride as electrode sensing material for tetrabromobisphenol-A determination. Sens. Actuators B Chem. 2017, 248, 673–681. [Google Scholar]
- Luo, S.; Wu, Y.; Mou, Q.; Li, J.; Luo, X. A thio-β-cyclodextrin functionalized graphene/gold nanoparticle electrochemical sensor: A study of the size effect of the gold nanoparticles and the determination of tetrabromobisphenol A. RSC Adv. 2019, 9, 17897–17904. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Wang, Y.; Wu, W.; Jing, T.; Mei, S.; Zhou, Y. Synergetic signal amplification of multi-walled carbon nanotubes-Fe3O4 hybrid and trimethyloctadecylammonium bromide as a highly sensitive detection platform for tetrabromobisphenol A. Sci. Rep. 2016, 6, 38000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Yuan, R.; Wang, F.; Chen, Z.; Chen, H. Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. Sci. Total Environ. 2020, 765, 142673. [Google Scholar] [CrossRef]
- Kalinke, C.; Moscardi, A.; Oliveira, P.; Mangrich, A.S.; Bergamini, M.F. Simple and low-cost sensor based on activated biochar for the voltammetric stripping detection of caffeic acid. Microchem. J. 2020, 159, 105380. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Gevaerd, A.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar obtained from spent coffee grounds: Evaluation of adsorption properties and its application in a voltammetric sensor for lead (II) ions. Microchem. J. 2021, 165, 106114. [Google Scholar] [CrossRef]
- Sant’Anna, M.; Carvalho, S.; Gevaerd, A.; Silva, J.; Sussuchi, E.M. Electrochemical sensor based on biochar and reduced graphene oxide nanocomposite for carbendazim determination. Talanta 2020, 220, 121334. [Google Scholar] [CrossRef]
- de Oliveira, P.R.; Kalinke, C.; Gogola, J.L.; Mangrich, A.S.; Junior, L.H.M.; Bergamini, M.F. The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J. Electroanal. Chem. 2017, 799, 602–608. [Google Scholar] [CrossRef]
- Chen, X.; Lu, K.; Lin, D.; Li, Y.; Yin, S.; Zhang, Z.; Tang, M.; Chen, G. Hierarchical Porous Tubular Biochar Based Sensor for Detection of Trace Lead (II). Electroanalysis 2021, 33, 473–482. [Google Scholar] [CrossRef]
- Sakthivel, K.; Muthumariappan, A.; Chen, S.M.; Elanthamilan, E.; Merlin, J.P.; Chen, T.W.; Al-Hemaid, F.; Ajmal, A.M.; Soliman, E.M. A comparative study on conventionally prepared MnFe2O4 nanospheres and template-synthesized novel MnFe2O4 nano-agglomerates as the electrodes for biosensing of mercury contaminations and supercapacitor applications. Electrochim. Acta 2018, 290, 533–543. [Google Scholar]
- Sakthivel, K.; Muthumariappan, A.; Chen, S.M.; Li, Y.L.; Chen, T.W.; Ali, M.A. Evaluating Ternary Metal Oxide (TMO) core-shell nanocomposites for the rapid determination of the anti-neoplastic drug Chlorambucil (Leukeran™) by electrochemical approaches. Mater. Sci. Eng. 2019, 103, 109724. [Google Scholar] [CrossRef] [PubMed]
- Akilarasan, M.; Kogularasu, S.; Chen, S.M.; Chen, W.; Lou, B.S. A novel approach to iron oxide separation from e-waste and bisphenol a detection in thermal paper receipts using recovered nanocomposites. RSC Adv. 2018, 8, 39870–39878. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.W.; Tamilalagan, E.; Farraj, D.A.A.; Chen, S.M.; Muthumariappan, A.; Maheshwaran, S.; Elshikh, M.S. Improving sensitivity of antimicrobial drug nitrofurazone detection in food and biological samples based on nanostructured anatase-titania sheathed reduced graphene oxide. Nanotechnology 2020, 31, 445502. [Google Scholar] [CrossRef]
- Long, F.; Zhang, Z.; Yang, Z.; Zeng, J.; Jiang, Y. Imprinted electrochemical sensor based on magnetic multi-walled carbon nanotube for sensitive determination of kanamycin. J. Electroanal. Chem. 2015, 755, 7–14. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dong, X.; Silva, E.; Oliveira, L.D.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, M.; Li, P.; Yang, L.; Zhang, Z. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal. Bioresour. Technol. 2021, 319, 124199. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, K.; Liu, Z.; Wang, Z.; Li, B.; Zhang, D. Hierarchical porous carbon from hazardous waste oily sludge for all-solid-state flexible supercapacitor. Electrochim. Acta 2017, 240, 43–52. [Google Scholar] [CrossRef]
- Yakout, S.M. Monitoring the Changes of Chemical Properties of Rice Straw–Derived Biochars Modified by Different Oxidizing Agents and Their Adsorptive Performance for Organics. Bioremediat. J. 2015, 19, 171–182. [Google Scholar] [CrossRef]
- Mahalakshmy, R.; Indraneel, P.; Viswanathan, B. Surface functionalities of nitric acid treated carbon–A density functional theory based vibrational analysis. Indian J. Chem. 2009, 48, 352–356. [Google Scholar]
- Li, Y.; Shao, J.; Wang, X.; Deng, Y.; Yang, H.; Chen, H. Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy Fuels 2014, 28, 5119–5127. [Google Scholar] [CrossRef]
- Wan, M.; Houshamnd, A.H. Textural characteristics, surface chemistry and oxidation of activated carbon. J. Nat. Gas Chem. 2010, 19, 13. [Google Scholar]
- Upadhyay, S.S.; Kalambate, P.K.; Srivastava, A.K. Enantioselective biomimetic sensor for discrimination of R and S-Clopidogrel promoted by β-cyclodextrin complexes employing graphene and platinum nanoparticle modified carbon paste electrode. J. Electroanal. Chem. 2019, 840, 305–312. [Google Scholar] [CrossRef]
- Abdul, G.; Zhu, X.; Chen, B. Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chem. Eng. J. 2017, 319, 9–20. [Google Scholar] [CrossRef]
- Zhou, T.; Zhao, X.; Xu, Y.; Tao, Y.; Luo, D.; Hu, L.; Jing, T.; Zhou, Y.; Wang, P.; Mei, S. Electrochemical determination of tetrabromobisphenol A in water samples based on a carbon nanotubes@zeolitic imidazole framework-67 modified electrode. RSC Adv. 2020, 10, 2123–2132. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhang, K.; Yu, G.; Wu, W.; Wei, X.; Lu, Q. Facile electrochemical determination of tetrabromobisphenol A based on modified glassy carbon electrode. Talanta 2016, 151, 209–216. [Google Scholar] [CrossRef]
- Jian, S.A.; Chao, B.; Sx, B.; Kw, A. Poly (sulfosalicylic acid)-functionalized gold nanoparticles for the detection of tetrabromobisphenol A at pM concentrations. J. Hazard. Mater. 2020, 388, 121733. [Google Scholar]
- Gong, S.; Gao, C.; Wang, J.; Tong, J.; Bian, C.; Wu, K.; Xia, S. Reusable Boron-Doped Diamond Electrodes for the Semi-Continuous Detection of Tetrabromobisphenol A. IEEE Sens. J. 2018, 18, 5219–5224. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, M.; Zhou, Y.; Tong, J.; Wu, K. Electrochemical enhancement of acetylene black film as sensitive sensing platform for toxic tetrabromobisphenol A. RSC Adv. 2015, 5, 105837–105843. [Google Scholar] [CrossRef]
Type of the Electrode | Linear Range (nM) | Detection Limit (nM) | Reference |
---|---|---|---|
CNTs@ZIF-67/CP | 10–1500 | 4.23 | [34] |
CTAB/NG-TPA/GCE | 10–1000 | 9.0 | [35] |
g-C3N4/GCE | 20–1000 | 5.0 | [9] |
AuNPs-PSSA | 0.1–10 nM | 0.025 | [36] |
BDD electrode | 50–10,000 M | 27 | [37] |
SH-β-CD-AuNPs/GO/GCE | 15–7000 | 1.2 | [10] |
TOMA/GCE | 1.84–919 | 1.05 | [38] |
AB/GCE | 18.4–643 | 11.2 | [38] |
Fe3O4–activated biochar/GC | 5–1000 | 3.2 | This work |
Samples | Original | Added (nM) | This Method (n = 3) | ||
---|---|---|---|---|---|
Found | Recovery (%) | RSD | |||
1 | 0 | 100 | 99.1 | 99.1 ± 2.3 | 4.4 |
2 | 0 | 200 | 189.2 | 94.6 ± 2.6 | 3.5 |
3 | 0 | 400 | 381.2 | 95.3 ± 1.7 | 4.1 |
4 | 0 | 600 | 556.2 | 92.7 ± 1.2 | 4.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Yang, M.; Wu, Y.; Li, J.; Qin, J.; Feng, F. A Low Cost Fe3O4–Activated Biochar Electrode Sensor by Resource Utilization of Excess Sludge for Detecting Tetrabromobisphenol A. Micromachines 2022, 13, 115. https://doi.org/10.3390/mi13010115
Luo S, Yang M, Wu Y, Li J, Qin J, Feng F. A Low Cost Fe3O4–Activated Biochar Electrode Sensor by Resource Utilization of Excess Sludge for Detecting Tetrabromobisphenol A. Micromachines. 2022; 13(1):115. https://doi.org/10.3390/mi13010115
Chicago/Turabian StyleLuo, Suxing, Meizhi Yang, Yuanhui Wu, Jiang Li, Jun Qin, and Feng Feng. 2022. "A Low Cost Fe3O4–Activated Biochar Electrode Sensor by Resource Utilization of Excess Sludge for Detecting Tetrabromobisphenol A" Micromachines 13, no. 1: 115. https://doi.org/10.3390/mi13010115
APA StyleLuo, S., Yang, M., Wu, Y., Li, J., Qin, J., & Feng, F. (2022). A Low Cost Fe3O4–Activated Biochar Electrode Sensor by Resource Utilization of Excess Sludge for Detecting Tetrabromobisphenol A. Micromachines, 13(1), 115. https://doi.org/10.3390/mi13010115