An Analytical Energy Harvester Model for Interdigitated Ring Electrode on Circular Elastic Membrane
Abstract
:1. Introduction
2. Mathematical Model
2.1. Vibration of Circular Membranes
2.2. Interdigitated Ring Electrode on the Circle Membrane
2.3. Electrostatic Capacitance
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krupenkin, T.; Taylor, J.A. Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2011, 2, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, T.H.; Manakasettharn, S.; Taylor, J.A.; Krupenkin, T. Bubbler: A novel ultra-high power density energy harvesting method based on reverse electrowetting. Sci. Rep. 2015, 5, 16537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tashiro, R.; Kabei, N.; Katayama, K.; Ishizuka, Y.; Tsuboi, F.; Tsuchiya, K. Development of an electrostatic generator that harnesses the motion of a living body (use of a resonant phenomenon). Jsme Int. J. Ser. C-Mech. Syst. Mach. Elem. Manuf. 2000, 43, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Miki, D.; Edamoto, M.; Honzumi, M. A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J. Micromech. Microeng. 2010, 20, 104002. [Google Scholar] [CrossRef]
- Wei, C.F.; Jing, X.J. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Naruse, Y.; Matsubara, N.; Mabuchi, K.; Izumi, M.; Suzuki, S. Electrostatic micro power generation from low-frequency vibration such as human motion. J. Micromech. Microeng. 2009, 19, 094002. [Google Scholar] [CrossRef]
- Sterken, T.; Baert, K.; Puers, R.; Borghs, G. Power Extraction from Ambient Vibration. In Proceedings of the 3rd Workshop on Semiconductor Sensors and Actuators, Veldhoven, The Netherlands, 29 November 2002; pp. 680–683. [Google Scholar]
- Wang, F.; Hansen, O. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sens. Actuators A Phys. 2014, 211, 131–137. [Google Scholar] [CrossRef]
- Oberlander, J.; Jildeh, Z.B.; Kirchner, P.; Wendeler, L.; Bromm, A.; Iken, H.; Wagner, P.; Keusgen, M.; Schoning, M.J. Study of interdigitated electrode arrays using experiments and finite element models for the evaluation of sterilization processes. Sensors 2015, 15, 26115–26127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, C.; Rajaraman, S. Low-power, multimodal laser micromachining of materials for applications in sub-5 microm shadow masks and sub-10 microm interdigitated electrodes (IDEs) fabrication. Micromachines 2020, 11, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, R.G.; Effinger, R.T.; Aranda, I.; Copeland, B.M.; Covington, E.W.; Hogge, J.M. Radial field piezoelectric diaphragms. J. Intell. Mater. Syst. Struct. 2004, 15, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shan, X.; Shen, Z.; Xie, T.; Miao, J. A new self-powered sensor using the radial field piezoelectric diaphragm in d33 mode for detecting underwater disturbances. Sensors 2019, 19, 962. [Google Scholar] [CrossRef] [Green Version]
- Hsiung, L.C.; Yang, C.H.; Chiu, C.L.; Chen, C.L.; Wang, Y.; Lee, H.; Cheng, J.Y.; Ho, M.C.; Wo, A.M. A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosens. Bioelectron. 2008, 24, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.M.; Lan, K.C.; Hu, W.L.; Chen, M.K.; Jang, L.S.; Wang, M.H. Glycated hemoglobin (HbA1c) affinity biosensors with ring-shaped interdigital electrodes on impedance measurement. Biosens. Bioelectron. 2013, 49, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Kreyszig, E. Laplacian in polar coordinates circular membrane fourier–bessel series. In Advanced Engineering Mathematics, 10th ed.; Laurie Rosatone: Jefferson City, MO, USA, 2017; pp. 585–590. [Google Scholar]
- Xiang, Y.M. Further study on electrostatic capacitance of an inclined plate capacitor. J. Electrostat 2008, 66, 366–368. [Google Scholar] [CrossRef]
- Torres, E.O.; Rincón-Mora, G.A. Electrostatic Energy Harvester and Li-Ion Charger Circuit for Micro-Scale Applications. In Proceedings of the 49th IEEE International Midwest Symposium on Circuits and Systems, San Juan, PR, USA, 6–9 August 2006; pp. 65–69. [Google Scholar] [CrossRef]
- Tsutsumino, T.; Suzuki, Y.; Kasagi, N.; Sakane, Y. Seismic Power Generator Using High-Performance Polymer Electret. In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems: MEMS 2006, Istanbul, Turkey, 22–26 January 2006; pp. 98–101. [Google Scholar]
- Roundy, S.; Wright, P.K.; Rabaey, J.M. Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations; Kluwer Academic Publishers: Norwell, MA, USA, 2004. [Google Scholar] [CrossRef]
- Basset, P.; Galayko, D.; Paracha, A.M.; Marty, F.; Dudka, A.; Bourouina, T. A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. J. Micromech. Microeng. 2009, 19, 115025. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, D.; Folkmer, B.; Manoli, Y. Fabrication, characterization and modelling of electrostatic micro-generators. J. Micromech. Microeng. 2009, 19, 094001. [Google Scholar] [CrossRef]
- Yang, B. Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J. Micro/Nanolithogr. MEMS MOEMS 2010, 9, 023002. [Google Scholar] [CrossRef]
- Xu, R.; Akay, H.; Kim, S.G. Buckled MEMS beams for energy harvesting from low frequency vibrations. Research 2019, 2019, 1087946. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Hou, C.; Li, Y.; Liu, H.; Wang, F.; Chen, T.; Yang, Z.; Tang, G.; Sun, L. A low-frequency MEMS piezoelectric energy harvesting system based on frequency up-conversion mechanism. Micromachines 2019, 10, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisseau, S.; Despesse, G.; Seddik, B.A. Electrostatic conversion for vibration energy harvesting. In Small-Scale Energy Harvesting; Lallart, M., Ed.; INTECH: Lexington, KY, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
m | αm | J1(αm) |
---|---|---|
1 | 2.40483 | 0.51915 |
2 | 5.52008 | −0.34026 |
3 | 8.65373 | 0.27145 |
4 | 11.79153 | −0.23246 |
Plane | Used Transfer Equations | Point-A | Point-B | Point-C | Point-D |
---|---|---|---|---|---|
zp-plane | r1eiφ | (r1 + l1)eiφ | r2 | r2 + l2 | |
tp-plane | tp = Mzpπ/φ + M0 | (α, 0) | (−1, 0) | (β, 0) | (1, 0) |
ξp-plane | ξp = 0.5 (1 − α)(1 + tp)/(tp − α) | (−∞, 0) | (0, 0) | (1/k2, 0) | (1, 0) |
ζp-plane | Schwarz-Crystoffel | (0, iK′) | (0, 0) | (−K, iK′) | (−K, 0) |
Author | Ref | Output Power (μW) | Device Area (cm2) | Power Density (μW/cm2) | Frequency (Hz) | Gap (μm) | Voltage (V) |
---|---|---|---|---|---|---|---|
This study 1 | - | 1.16 | π | 0.37 | 30 | 100 | 300 |
Tsutsumino 2 | [18] | 38 | 3.00 | 12.67 | 20 | 15 | 950 |
Suzuki 2 | [4] | 1 | 3.05 | 0.33 | 63 | 50 | 180 |
Roundy 2 | [19] | 11 | 1.00 | 11.00 | 100 | 0.25 | 10 |
Basset 2 | [20] | 0.061 | 0.66 | 0.92 | 250 | 1.7 | 8 |
Hoffmann 2 | [21] | 3.5 | 0.30 | 11.67 | 1300–1500 | 2.5 | 50 |
Publisher′s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, H.-J.; Chen, K.-C. An Analytical Energy Harvester Model for Interdigitated Ring Electrode on Circular Elastic Membrane. Micromachines 2022, 13, 133. https://doi.org/10.3390/mi13010133
Shih H-J, Chen K-C. An Analytical Energy Harvester Model for Interdigitated Ring Electrode on Circular Elastic Membrane. Micromachines. 2022; 13(1):133. https://doi.org/10.3390/mi13010133
Chicago/Turabian StyleShih, Hua-Ju, and Kuo-Ching Chen. 2022. "An Analytical Energy Harvester Model for Interdigitated Ring Electrode on Circular Elastic Membrane" Micromachines 13, no. 1: 133. https://doi.org/10.3390/mi13010133
APA StyleShih, H. -J., & Chen, K. -C. (2022). An Analytical Energy Harvester Model for Interdigitated Ring Electrode on Circular Elastic Membrane. Micromachines, 13(1), 133. https://doi.org/10.3390/mi13010133