Optimization of Complete Rat Heart Decellularization Using Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heart Explantation
2.2. Decellularization of Rat Heart
2.3. Spectrophotometric Assay
2.4. The Monitoring System
2.5. Collection of Data and Spectrometric Assay
2.6. Training and Testing of Neural Networks
2.7. Histological Examination of the Whole Decellularized Heart
3. Results
3.1. Whole-Heart Decellularization
3.2. DNA/Proteins Quantification
3.3. Optimization of Rat Heart Decellularization Using a Deep Convolutional Neural Network (DCNN) Model
3.4. Microscopic Preservation of Cardiac ECM
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Giwa, S.; Lewis, J.K.; Alvarez, L.; Langer, R.; Roth, A.E.; Church, G.M.; Markmann, J.F.; Sachs, D.H.; Chandraker, A.; Wertheim, J.A.; et al. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 2017, 35, 530–542. [Google Scholar] [CrossRef]
- Tonsho, M.; Michel, S.; Ahmed, Z.; Alessandrini, A.; Madsen, J.C. Heart transplantation: Challenges facing the field. Cold Spring Harb. Perspect. Med. 2014, 4, a015636. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.L.; Callaghan, C. The Immunology of organ transplantation. Surgery 2017, 35, 333–340. [Google Scholar] [CrossRef]
- Seetapun, D.; Ross, J.J. Eliminating the organ transplant waiting list: The future with perfusion decellularized organs. Surgery 2017, 161, 1474–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, H.C.; Matthiesen, T.S.; Goh, S.-K.; Black, L.D.; Kren, S.M.; Netoff, T.I.; Taylor, D.A. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 2008, 14, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.M.; Mocanu, M.M.; Yellon, D.M. Retrograde heart perfusion: The langendorff technique of isolated heart perfusion. J. Mol. Cell. Cardiol. 2011, 50, 940–950. [Google Scholar] [CrossRef]
- Hodgson, M.J.; Knutson, C.C.; Momtahan, N.; Cook, A.D. Extracellular matrix from whole porcine heart decellularization for cardiac tissue engineering. In Decellularized Scaffolds and Organogenesis. Methods in Molecular Biology; Turksen, K., Ed.; Springer New York: New York, NY, USA, 2017; Volume 1577, pp. 95–102. [Google Scholar] [CrossRef]
- Ozlu, B.; Ergin, M.; Budak, S.; Tunali, S.; Yildirim, N.; Erisken, C. A bioartificial rat heart tissue: Perfusion decellularization and characterization. Int. J. Artif. Organs 2019, 42, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wang, H.; Gong, W.; Li, S.; Li, H.; Wang, Z.; Zhao, Q. Impact of decellularization on porcine myocardium as scaffold for tissue engineered heart tissue. J. Mater. Sci. Mater. Med. 2016, 27, 70. [Google Scholar] [CrossRef]
- Methe, K.; Bäckdahl, H.; Johansson, B.R.; Nayakawde, N.; Dellgren, G.; Sumitran-Holgersson, S. An alternative approach to decellularize whole porcine heart. BioRes. Open Access 2014, 3, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-F.; Chau, E.; Cabello, R.; Yeh, A.T.; Sampaio, L.C.; Gobin, A.S.; Taylor, D.A. Inverted orientation improves decellularization of whole porcine hearts. Acta Biomaterialia 2017, 49, 181–191. [Google Scholar] [CrossRef]
- Tang-Quan, K.R.; Mehta, N.A.; Sampaio, L.C.; Taylor, D.A. Whole cardiac tissue bioscaffolds. In Cardiac Extracellular Matrix; Schmuck, E.G., Hematti, P., Raval, A.N., Eds.; Springer International Publishing: Cham, Germany, 2018; Volume 1098, pp. 85–114. [Google Scholar] [CrossRef]
- Nguyen, D.T.; O’Hara, M.; Graneli, C.; Hicks, R.; Miliotis, T.; Nyström, A.-C.; Hansson, S.; Davidsson, P.; Gan, L.-M.; Magnone, M.C.; et al. Humanizing miniature hearts through 4-flow cannulation perfusion decellularization and recellularization. Sci. Rep. 2018, 8, 7458. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.-W.; Mohamed, M.; Hogan, M.; Salazar, B.; Patel, N.M.; Birla, R.K. Establishing the framework for fabrication of a bioartificial heart. ASAIO J. 2015, 61, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Weymann, A.; Patil, N.P.; Sabashnikov, A.; Jungebluth, P.; Korkmaz, S.; Li, S.; Veres, G.; Soos, P.; Ishtok, R.; Chaimow, N.; et al. Bioartificial heart: A human-sized porcine model—The way ahead. PLoS ONE 2014, 9, e111591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbulescu, G.I.; Bojin, F.M.; Ordodi, V.L.; Goje, I.D.; Buica, T.P.; Gavriliuc, O.I.; Baderca, F.; Hoinoiu, T.; Paunescu, V. Innovative biotechnology for generation of cardiac tissue. Appl. Sci. 2021, 11, 5603. [Google Scholar] [CrossRef]
- Bonciog, D.D.; Matiu-Iovan, L.; Barbulescu, G.-I.; Burian, C.A.; Goje, I.-D.; Buica, T.P.; Paunescu, V.; Ordodi, V.L. Modified Langendorff device for rat heart decellularization. Physiology 2019, 2, 17–20. [Google Scholar]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build. Intelligent Systems, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Wang, H.; Pujos-Guillot, E.; Comte, B.; de Miranda, J.L.; Spiwok, V.; Chorbev, I.; Castiglione, F.; Tieri, P.; Watterson, S.; McAllister, R. Deep Learning in Systems Medicine. Brief. Bioinform. 2021, 22, 1543–1559. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Lee, G.; Fujita, H. (Eds.) Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Germany, 2020; Volume 1213. [Google Scholar] [CrossRef] [Green Version]
- Rajab, T.K.; Tchantchaleishvili, V. Can tissue engineering produce bioartificial organs for transplantation? Artif. Organs 2019, 43, 536–541. [Google Scholar] [CrossRef]
- Akhyari, P.; Aubin, H.; Gwanmesia, P.; Barth, M.; Hoffmann, S.; Huelsmann, J.; Preuss, K.; Lichtenberg, A. The quest for an optimized protocol for whole-heart decellularization: A comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng. Part C Methods 2011, 17, 915–926. [Google Scholar] [CrossRef]
- Bruyneel, A.A.N.; Carr, C.A. Ambiguity in the presentation of decellularized tissue composition: The need for standardized approaches: Thoughts and progress. Artif. Organs 2017, 41, 778–784. [Google Scholar] [CrossRef]
- Kc, P.; Hong, Y.; Zhang, G. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: Advantages and challenges. Regen Biomater. 2019, 6, 185–199. [Google Scholar] [CrossRef]
- Zia, S.; Mozafari, M.; Natasha, G.; Tan, A.; Cui, Z.; Seifalian, A.M. Hearts beating through decellularized scaffolds: Whole-organ engineering for cardiac regeneration and transplantation. Crit. Rev. Biotechnol. 2016, 36, 705–715. [Google Scholar] [CrossRef]
- Hagen, C.K.; Maghsoudlou, P.; Totonelli, G.; Diemoz, P.C.; Endrizzi, M.; Rigon, L.; Menk, R.-H.; Arfelli, F.; Dreossi, D.; Brun, E.; et al. High contrast microstructural visualization of natural acellular matrices by means of phase-based X-ray tomography. Sci Rep. 2016, 5, 18156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timchenko, E.V.; Timchenko, P.E.; Lichtenberg, A.; Assmann, A.; Aubin, H.; Akhyari, P.; Volova, L.T.; Pershutkina, S.V. Assessment of decellularization of heart bioimplants using a raman spectroscopy method. J. Biomed. Opt. 2017, 22, 91511. [Google Scholar] [CrossRef]
- Pereira, R.H.A.; Prado, A.R.; Caro, L.F.C.D.; Zanardo, T.É.C.; Alencar, A.P.; Nogueira, B.V. A non-linear mathematical model using optical sensor to predict heart decellularization efficacy. Sci Rep. 2019, 9, 12211. [Google Scholar] [CrossRef]
- Kwak, M.S.; Lee, H.H.; Yang, J.M.; Cha, J.M.; Jeon, J.W.; Yoon, J.Y.; Kim, H.I. Deep convolutional neural network-based lymph node metastasis prediction for colon cancer using histopathological images. Front. Oncol. 2021, 10, 619803. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Zhou, J.; Wang, L.; Ni, M.; Chen, M.; Hassan, S.; Luo, R.; Chen, X.; He, X.; Zhang, L. A novel model based on deep convolutional neural network improves diagnostic accuracy of intramucosal gastric cancer (with video). Front. Oncol. 2021, 11, 622827. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, D.; Yuasa, S. The application of convolutional neural network to stem cell biology. Inflamm. Regen. 2019, 39, 14. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbulescu, G.I.; Buica, T.P.; Goje, I.D.; Bojin, F.M.; Ordodi, V.L.; Olteanu, G.E.; Heredea, R.E.; Paunescu, V. Optimization of Complete Rat Heart Decellularization Using Artificial Neural Networks. Micromachines 2022, 13, 79. https://doi.org/10.3390/mi13010079
Barbulescu GI, Buica TP, Goje ID, Bojin FM, Ordodi VL, Olteanu GE, Heredea RE, Paunescu V. Optimization of Complete Rat Heart Decellularization Using Artificial Neural Networks. Micromachines. 2022; 13(1):79. https://doi.org/10.3390/mi13010079
Chicago/Turabian StyleBarbulescu, Greta Ionela, Taddeus Paul Buica, Iacob Daniel Goje, Florina Maria Bojin, Valentin Laurentiu Ordodi, Gheorghe Emilian Olteanu, Rodica Elena Heredea, and Virgil Paunescu. 2022. "Optimization of Complete Rat Heart Decellularization Using Artificial Neural Networks" Micromachines 13, no. 1: 79. https://doi.org/10.3390/mi13010079
APA StyleBarbulescu, G. I., Buica, T. P., Goje, I. D., Bojin, F. M., Ordodi, V. L., Olteanu, G. E., Heredea, R. E., & Paunescu, V. (2022). Optimization of Complete Rat Heart Decellularization Using Artificial Neural Networks. Micromachines, 13(1), 79. https://doi.org/10.3390/mi13010079