Analysis of Current Situation, Demand and Development Trend of Casting Grinding Technology
Abstract
:1. Complexity Description of Casting Grinding Process
1.1. Polishing Environment with Large Noise
1.2. Non-Structural Casting Entities
1.3. Tendency for the Overall Shape to Change over Time
2. Development History of Grinding Process
2.1. Initial Manual Polishing
2.2. Mainstream Mechanical Grinding Process
2.3. Polishing Mode Based on Modern Control Theory
3. Demand Analysis of Grinding Technology for Modern Casting Production
3.1. Casting Scale Increase
3.2. The Cost of Grinding Process Should Be Reduced
3.3. Technical Challenges of Complex Workpiece Grinding: Fast Response, Thin Brittleness, and High Precision
4. Classification of Intelligent Grinding Methods
4.1. Judgment of Grinding Position Based on Image Vision
4.2. Judgment of Grinding Position Based on Laser Sensing
4.3. Abrasive Quantity Prediction Based on Data-Driven
4.3.1. Model-Based Material Prediction
4.3.2. Data-Driven Prediction of Material Removal
4.4. Grinding Method Based on 2.5D Local Feature Information
4.5. Grinding Method Based on Comparison between Design Model and 3D Point Cloud
- (A)
- Traditional point cloud registration method
- (B)
- Intelligent point cloud registration method
5. Summary and Prediction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Londershausen, T.; Vaupel, K.; Prziwara, P. Influence of Grinding Aids on the Dust Formation Tendency. Chem. Eng. Technik. 2019, 91, 1008–1013. [Google Scholar] [CrossRef]
- Wei, N.Y.; Lin, H.S.; Chen, T. The hand-arm vibration syndrome associated with the grinding of handheld workpieces in a subtropical environment. Int. Occup. Environ. Health Arch. 2021, 94, 773–781. [Google Scholar] [CrossRef]
- Ding, H.; Yang, J.; Wang, W.; Guo, J.; Liu, Q. Characterization and formation mechanisms of rail chips from facing grinding by abrasive wheel. J. Manuf. Process. 2022, 73, 544–554. [Google Scholar] [CrossRef]
- Wang, J.; Sama, S.R.; Lynch, P.C. Design and Topology Optimization of 3D-Printed Wax Patterns for Rapid Investment Casting. Procedia Manuf. 2019, 34, 683–694. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, T.; Tan, Y. An adaptive grinding method for precision-cast blades with geometric deviation. Int. J. Adv. Manuf. Technol. 2020, 108, 2349–2365. [Google Scholar] [CrossRef]
- Zeng, L.; Cui, D.; Fu, Y.; Li, L.; Liu, Z. Analysis on Curve Negotiating Ability of Rail Grinder in Grinding State. Sci. Rep. 2022, 12, 11668. [Google Scholar] [CrossRef]
- Xie, H.; Li, W.-L.; Yin, Z.-P.; Ding, H. Variance-Minimization Iterative Matching Method for Free-Form Surfaces—Part I, Theory and Method. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1181–1191. [Google Scholar] [CrossRef]
- Di Bella, M.; Italiano, F.; Martinelli, M.C. Archeometric characterization of prehistoric grindstones from Milazzo Bronze Age settlement (Sicily, Italy). Archaeol. Anthropol. Sci. 2018, 10, 1571–1583. [Google Scholar] [CrossRef]
- Sojak, M.; Wawrzczak, M. A study of the stones in the collection of the Mining Museum of Roznava. Res. News Inst. Archaeol. Slovak Acad. Sci. 2017, 62, 7–36. [Google Scholar]
- Li, X.J.; Martinón-Torres, M.; Meeks, N.D. Inscriptions, filing, grinding and polishing marks on the bronze weapons from the Qin Terracotta Army in China. J. Archaeol. Sci. 2011, 38, 492–501. [Google Scholar] [CrossRef]
- Gantsev, V. Rotary Millstones of the 9th–11th Centuries from the Excavations of the Mangup Princely Palace. Vestn. Volgogr. Gos. Universiteta. Ser. 4. History. Regionovedenie. Intergov. Relat. 2021, 25, 131–141. [Google Scholar] [CrossRef]
- Whitmore, L. A precision manual grinding tool for sample preparation. Ultramicroscopy 2022, 233, 113436. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.G.; Welcome, D.E.; Xu, X.S. Identification of effective engineering methods for controlling handheld workpiece vibration in grinding processes. Int. J. Ind. Ergon. 2020, 77, 102946. [Google Scholar] [CrossRef]
- Hashimoto, F.; Gallego, I.; Oliveira, J.F.G. Advances in centerless grinding technology. CIRP Ann. 2012, 61, 747–770. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Fang, Y. A novel approach to wheel path generation for 4-axis CNC flank grinding of conical end-mills. Int. J. Adv. Manuf. Technol. 2020, 109, 565–578. [Google Scholar] [CrossRef]
- Gotlih, J.; Brezocnik, M.; Balic, J. Determination of accuracy contour and optimization of workpiece positioning for robot milling. Adv. Prod. Eng. Manag. 2017, 12, 233–244. [Google Scholar] [CrossRef]
- Tate, A.R. Closed Loop Force Control for a Robotic Grinding System. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1986. [Google Scholar]
- Liu, P.; Zou, W.; Peng, J. Designed a Passive Grinding Test Machine to Simulate Passive Grinding Process. Processes 2021, 9, 1317. [Google Scholar] [CrossRef]
- Wanjin, G. Research on Robot for Grinding of Complex Shape Parts; Harbin Institute of Technology: Harbin, China, 2017. [Google Scholar]
- Dong, J.; Shi, J.; Liu, C.; Yu, T. Research of Pneumatic Polishing Force Control System Based on High Speed on/off with PWM Controlling. Robot. Comput. Integr. Manuf. 2021, 70, 102133. [Google Scholar] [CrossRef]
- Ji, S.J.; Lei, L.G.; Zhao, J. An adaptive real-time NURBS curve interpolation for 4-axis polishing machine tool. Robot. Comput. Integr. Manuf. 2021, 67, 102025. [Google Scholar] [CrossRef]
- Xing, H.; Ding, L.; Gao, H. Adaptive tracking of axial position for valve-turning with a robot based on impedance control. Chin. J. Mech. Eng. 2019, 15, 124–134. [Google Scholar]
- Fan, C.; Xue, C.; Zhang, L.; Wang, K.; Wang, Q.; Gao, Y.; Lu, L. Design and control of the belt-polishing tool system for the blisk finishing process. Mech. Sci. 2021, 12, 237–248. [Google Scholar] [CrossRef]
- Chiwu, B. Control Study of a Wind Turbine Blade Grinding Robot; Harbin Engineering University: Harbin, China, 2012. [Google Scholar]
- Yun, J.T.; Sun, Y.; Li, C.Q. Self-adjusting force/bit blending control based on quantitative factor-scale factor fuzzy-PID bit control. Alex. Eng. Mag. 2022, 61, 4389–4397. [Google Scholar] [CrossRef]
- Muller, D.; Veil, C.; Sawodny, O. Hybrid force/position control for quasi continuum manipulators. AT Autom. Tech. 2020, 68, 854–862. [Google Scholar] [CrossRef]
- Xia, G.H.; Li, C.; Zhu, Q.D.; Xie, X. Hybrid Force/Position Control of Industrial Robotic Manipulator Based on Kalman Filter. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 2070–2075. [Google Scholar]
- Ochoa, H.; Cortesao, R. Impedance Control Architecture for Robotic-Assisted Mold Polishing Based on Human Demonstration. IEEE Trans. Ind. Electron. 2022, 69, 3822–3830. [Google Scholar] [CrossRef]
- Kana, S.; Lakshminarayanan, S.; Mohan, D.M. Impedance controlled human-robot collaborative tooling for edge chamfering and polishing applications. Robot. Comput. Integr. Manuf. 2021, 72, 102199. [Google Scholar] [CrossRef]
- Li, J.; Guan, Y.S.; Chen, H.W.; Wang, B.; Zhang, T.; Hong, J.; Wang, D. Real-time normal contact force control for robotic surface processing of workpieces without a priori geometric model. Int. J. Adv. Manuf. Technol. 2022, 119, 2537–2551. [Google Scholar] [CrossRef]
- Dai, J.J.; Chen, C.Y.; Zhu, R.F. Suppress Vibration on Robotic Polishing with Impedance Matching. Actuators 2021, 10, 59. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, S.; Wang, G. A hybrid control strategy for grinding and polishing robot based on adaptive impedance control. Adv. Mech. Eng. 2021, 13, 2072279128. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, G.; Morimoto, K. Automated Rust Removal, Rust Detection and Visual Servo Control. Autom. Constr. 2022, 134, 104043. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Li, L.; Zhao, J.B. The hybrid force/position anti-disturbance control strategy for robot abrasive belt grinding of aviation blade base on fuzzy PID control. Int. J. Adv. Manuf. Technol. 2021, 114, 3645–3656. [Google Scholar] [CrossRef]
- Mohammad, A.E.K.; Hong, J.; Wang, D. Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robot. Comput. Integr. Manuf. 2018, 49, 54–65. [Google Scholar] [CrossRef]
- Ding, B.X.; Zhao, J.Y.; Li, Y.M. Design of a spatial constant-force end-effector for polishing/deburring operations. Int. J. Adv. Manuf. Technol. 2021, 116, 3507–3515. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, Q. Design of a new passive end-effector based on constant-force mechanism for robotic polishing. Robot. Comput. Integr. Manuf. 2022, 74, 102278. [Google Scholar] [CrossRef]
- 2020 China Foundry Industry Data Release. Cast. Technol. 2021, 42, 547–552. [CrossRef]
- Haitao, N.; Sifu, M.; Zhenjie, Z. Design of a storage device for stamping dies under high-tempo and high-volume production conditions. Mold Manuf. 2021, 21, 15–18. [Google Scholar]
- Shaofei, J. Research on Cost Decision and Control Method and Technology of Mechanical Product Design Process. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2003. [Google Scholar]
- Horn, B. Robot Vision; The MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Norouzi-Ghazbi, S.; Mehrkish, A.; Fallah, M.M.H.; Janabi-Sharifi, F. Constrained visual predictive control of tendon-driven continuum robots. Robot. Auton. Syst. 2021, 145, 103856. [Google Scholar] [CrossRef]
- Moravec, H.P. Rover Visual Obstacle Avoidance. IJCAI 1981, 81, 785–790. [Google Scholar]
- Degrieck, J.; Van Paepegem, W.; Boone, P. Application of digital phase-shift shadow moiré to micro deformation measurements of curved surfaces. Opt. Lasers Eng. 2001, 36, 29–40. [Google Scholar] [CrossRef]
- Mohammadi, F.; Madanipour, K.; Rezaie, A.H. Application of digital phase shift moiré to reconstruction of human face. In Proceedings of the 2010 Fourth UKSim European Symposium on Computer Modeling and Simulation, Pisa, Italy, 17–19 November 2010. [Google Scholar]
- Fang, T.; Ding, Y. A sampling-based motion planning method for active visual measurement with an industrial robot. Robot. Comput. Integr. Manuf. 2022, 76, 102322. [Google Scholar] [CrossRef]
- Deng, D.; Polden, J.W.; Dong, J.; Tao, P.Y. Sensor Guided Robot Path Generation for Surface Repair Tasks on a Large-Scale Buoyancy Module. IEEE/ASME Trans. Mechatron. 2018, 23, 636–645. [Google Scholar] [CrossRef]
- Joshi, K.; Patil, B. Prediction of Surface Roughness by Machine Vision using Principal Components based Regression Analysis. Procedia Comput. Sci. 2020, 167, 382–391. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, G.; Ren, L.; Li, Y.; Yang, Z. In-process material removal rate monitoring for abrasive belt grinding using multisensor fusion and 2D CNN algorithm. Int. J. Adv. Manuf. Technol. 2022, 120, 599–613. [Google Scholar] [CrossRef]
- Li, C.; Yuan, Y.; Amyotte, P.; Xiao, M.; Zheng, W.; Bu, Y.; Yuan, C.; Li, G. Friction spark generation and incendivity of several metal alloys. J. Loss Prev. Process Ind. 2021, 70, 104406. [Google Scholar] [CrossRef]
- Boillot, J.-P.; Cote, J.-L. Principle of Laser Vision Sensor and Its Application in Arc Welding and Laser Welding; Chinese Mechanical Engineering Society: Beijing, China, 2002. [Google Scholar]
- Nitzan, D.; Brain, A.E.; Duda, R.O. The measurement and use of registered reflectance and range data in scene analysis. Proc. IEEE 1977, 65, 206–220. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, D.; Zhang, H.; Yan, S.; Ding, H. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements. Int. J. Adv. Manuf. Technol. 2017, 90, 635–647. [Google Scholar] [CrossRef]
- Yan, S.; Xu, X.; Yang, Z.; Zhu, D.; Ding, H. An improved robotic abrasive belt grinding force model considering the effects of cut-in and cut-off. J. Manuf. Process. 2019, 37, 496–508. [Google Scholar] [CrossRef]
- Zhu, D.; Xu, X.; Yang, Z.; Zhuang, K.; Yan, S.; Ding, H. Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments. Tribol. Int. 2018, 120, 93–98. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, D.; Zhang, H.; Yan, S.; Ding, H. Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades. Chin. J. Aeronaut. 2019, 32, 2368–2382. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, D.; Wang, J.; Yan, S.; Ding, H. Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere. Robot. Comput. Integr. Manuf. 2018, 51, 189–201. [Google Scholar] [CrossRef]
- Seidel, A.; Gollee, C.; Schnellhardt, T.; Hammer, M.; Dassing, J.; Vogt, R.; Wiese, T.; Teicher, U.; Hellmich, A.; Ihlenfeldt, S.; et al. Cyber-physical approach toward semiautonomous postprocessing of additive manufactured parts and components. J. Laser Appl. 2021, 33, 12033. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, H.; Bai, K.; Li, M.; Dong, W. A Robotic Milling System Based on 3D Point Cloud. Machines 2021, 9, 355. [Google Scholar] [CrossRef]
- Ge, J.; Deng, Z.; Li, Z.; Li, W.; Lv, L.; Liu, T. Robot welding seam online grinding system based on laser vision guidance. Int. J. Adv. Manuf. Technol. 2021, 116, 1737–1749. [Google Scholar] [CrossRef]
- Ji, W.; Wang, L. Industrial robotic machining, a review. Int. J. Adv. Manuf. Technol. 2019, 103, 1239–1255. [Google Scholar] [CrossRef]
- Rowe, W. Towards High Productivity in Precision Grinding. Inventions 2018, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Domblesky, J.; Evans, R.; Cariapa, V. Material removal model for vibratory finishing. Int. J. Prod. Res. 2004, 42, 1029–1041. [Google Scholar] [CrossRef]
- Naruse, N.; Uneda, M.; Ishikawa, K. Study on oscillation controlled lapping by small diameter tool, Consideration based on grinding characteristics and slurry flow considering overhang (machine elements, lubrication, design, production machining, production system etc.). Nippon. Kikai Gakkai Rombunshu 2009, 75, 2581–2588. [Google Scholar]
- Makiuchi, Y.; Hashimoto, F.; Beaucamp, A. Model of material removal in vibratory finishing, based on Preston’s law and discrete element method. CIRP Ann. 2019, 68, 365–368. [Google Scholar] [CrossRef]
- Lee, Y.; Wang, H.; Park, J.; Jeong, H. Experimental investigation of process parameters for roll-type linear chemical mechanical polishing (Roll-CMP) system. Precis. Eng. 2014, 38, 928–934. [Google Scholar] [CrossRef]
- Pan, R.; Zhong, B.; Chen, D.; Wang, Z.; Fan, J.; Zhang, C.; Wei, S. Modification of tool influence function of bonnet polishing based on interfacial friction coefficient. Int. J. Mach. Tools Manuf. 2018, 124, 43–52. [Google Scholar] [CrossRef]
- Dan, J.; Zhang, M. Study on edge-forming mechanism for aspheric surface compliant polishing. China Mech. Eng. 2013, 24, 1587. [Google Scholar]
- Wang, W.; Liu, F.; Liu, Z.; Yun, C. Prediction of depth of cut for robotic belt grinding. Int. J. Adv. Manuf. Technol. 2017, 91, 699–708. [Google Scholar] [CrossRef]
- Panda, D.K.; Bhoi, R.K. Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Machining. Mater. Manuf. Processes 2005, 20, 645–672. [Google Scholar] [CrossRef]
- Somashekhar, K.P.; Ramachandran, N.; Mathew, J. Optimization of Material Removal Rate in Micro-EDM Using Artificial Neural Network and Genetic Algorithms. Mater. Manuf. Process. 2010, 25, 467–475. [Google Scholar] [CrossRef]
- Khalick Mohammad, A.E.; Hong, J.; Wang, D. Polishing of uneven surfaces using industrial robots based on neural network and genetic algorithm. Int. J. Adv. Manuf. Technol. 2017, 93, 1463–1471. [Google Scholar] [CrossRef]
- Nasir, V.; Sassani, F. A review on deep learning in machining and tool monitoring, Methods, opportunities, and challenges. Int. J. Adv. Manuf. Technol. 2021, 115, 2683–2709. [Google Scholar] [CrossRef]
- Gao, K.; Chen, H.; Zhang, X.; Ren, X.; Chen, J.; Chen, X. A novel material removal prediction method based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718. Int. J. Adv. Manuf. Technol. 2019, 105, 217–232. [Google Scholar] [CrossRef]
- Fang, W.; Zheng, L.; He, B.; Wang, Q. Automatic 3D model acquisition for unknown objects based on hybrid vision technology. Int. J. Precis. Eng. Manuf. 2017, 18, 275–284. [Google Scholar] [CrossRef]
- Verma, A.K.; Rajotia, S. A hint-based machining feature recognition system for 2.5D parts. Int. J. Prod. Res. 2008, 46, 1515–1537. [Google Scholar] [CrossRef]
- Lo, T.R.; Siebert, J.P. Local feature extraction and matching on range images, 2.5D SIFT. Comput. Vis. Image Underst. 2009, 113, 1235–1250. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wang, W.; Chen, Y.; Liu, H.; Jie, Z.; Zhang, C. From 2.5D Bas-relief to 3D Portrait Model. Comput. Graph. Forum 2020, 39, 258–268. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, B.; Chen, Y.; Ji, Z.; Zhang, C. Portrait relief generation from 3D Object. Graph. Models 2019, 102, 10–18. [Google Scholar] [CrossRef]
- Kuss, A.; Drust, M.; Verl, A. Detection of Workpiece Shape Deviations for Tool Path Adaptation in Robotic Deburring Systems. Procedia CIRP 2016, 57, 545–550. [Google Scholar] [CrossRef]
- Zhu, D.; Feng, X.; Xu, X.; Yang, Z.; Li, W.; Yan, S.; Ding, H. Robotic grinding of complex components, a step towards efficient and intelligent machining—challenges, solutions, and applications. Robot. Comput. Integr. Manuf. 2020, 65, 101908. [Google Scholar] [CrossRef]
- Gao, Y.; Du, Z.; Li, M.; Dong, W. An automated approach for machining allowance evaluation of casting parts. Int. J. Comput. Integr. Manuf. 2019, 32, 1043–1052. [Google Scholar] [CrossRef]
- Hu, J.; Kabir, A.M.; Hartford, S.M.; Gupta, S.K.; Pagilla, P.R. Robotic deburring and chamfering of complex geometries in high-mix/low-volume production applications. In Proceedings of the 16th IEEE International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020. [Google Scholar]
- Huang, W.; Mei, X.; Jiang, G.; Hou, D.; Bi, Y.; Wang, Y. An on-machine tool path generation method based on hybrid and local point cloud registration for laser deburring of ceramic cores. J. Intell. Manuf. 2021. [Google Scholar] [CrossRef]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A comprehensive survey on point cloud registration. arXiv 2021, arXiv:2103.02690. [Google Scholar]
- Besl, P.J.; Mckay, H.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001. [Google Scholar]
- Bouaziz, S.; Tagliasacchi, A.; Pauly, M. Sparse Iterative Closest Point. Comput. Graph. Forum 2013, 32, 113–123. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Y.; Deng, B. Fast and Robust Iterative Closest Point. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3450–3466. [Google Scholar] [CrossRef]
- Paul, W.H.; Roy, E.W. Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods 1977, 6, 1973–2014. [Google Scholar]
- Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. PointNetLK, Robust & Efficient Point Cloud Registration using PointNet. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7163–7172. [Google Scholar]
- Liu, D.; Zhang, Y.; Luo, L.; Li, J.; Gao, X. PDC-Net, Robust point cloud registration using deep cyclic neural network combined with PCA. Appl. Opt. 2021, 60, 2990. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, J.; Luna-Madrigal, F.; Pina-Ramirez, O. Deep Learning Point Cloud Registration based on Distance Features. IEEE Lat. Am. Trans. 2019, 17, 2053–2060. [Google Scholar] [CrossRef]
- Janez, G.; Timi, K.; Karl, G.; Miran, B. Accuracy improvement of robotic machining based on robot’s structural properties. Int. J. Adv. Manuf. Technol. 2020, 108, 1309–1329. [Google Scholar] [CrossRef]
- Guo, W.C.; Wu, C.J.; Ding, Z.S.; Zhou, Q. Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding. Int. J. Adv. Manuf. Technol. 2021, 112, 2853–2871. [Google Scholar] [CrossRef]
- Yu, T.; Li, Z.; Wu, D. Predictive modeling of material removal rate in chemical mechanical planarization with physics-informed machine learning. Wear 2019, 426, 1430–1438. [Google Scholar] [CrossRef]
- Kim, B.; Choi, M.; Son, S.-W.; Yun, D.; Yoon, S. Vision-force guided precise robotic assembly for 2.5D components in a semistructured environment. Assem. Autom. 2021, 41, 200–207. [Google Scholar] [CrossRef]
Universal Grinding Machine | Special Grinding Machine | Numerical Control Grinding Machine | Robot Grinding System | |
---|---|---|---|---|
Stiffness | 4 | 4 | 4 | 1 |
Flexibility | 2 | 0 | 3 | 5 |
Workspace | 1 | 1 | 2 | 5 |
Versatility | 2 | 0 | 3 | 5 |
Cost | 3 | 2 | 2 | 4 |
Synthesis Evaluation value | 6.3 | 4.1 | 8.2 | 11.6 |
Grinding Method | Core Technology | Advantage | Shortcoming | Literature |
---|---|---|---|---|
Manual grinding | Human experience | Flexible | Inefficient and damaging to the body | [8,9,10,11,12] |
Mechanical grinding | Machine tool equipment | High precision | Poor flexibility and small space | [14,15,16,17,19,94] |
Grinding based on compliant control theory | Force and position control | High precision and large working space | Poor rigidity | [18,32,34,35,36,37] |
Judgmental grinding based on visual sensing | Visual perception devices, visual judgment algorithms | Intelligence has a judgment function | Limited two-dimensional plane space judgment, affected by the environment | [33,46,47] |
Judgmental grinding based on laser sensing | Laser perception equipment, judgment algorithm | The equipment is robust and accurate | The device acquires data slowly | [45,58,59,60] |
Predictive grinding based on machine vision | Visual prediction algorithms, advanced perception devices | Material removal prediction, intelligent material removal | Only harder materials have better predictions and are greatly disturbed by the environment | [48,49] |
Predictive grinding based on multi-information fusion | Predict the model, training data | Material removal prediction | Low prediction accuracy and a large amount of training data are required | [64,65,95,96] |
Grinding based on 2.5D local feature information | Depth pre-estimation method, feature recognition algorithm | Has depth information | The depth information is inaccurate and the feature recognition needs to be set multiple times | [76,78,97] |
Based on the design model and the 3D point cloud comparison grinding method | Laser sensors, registration algorithms | Accurate route planning with 3D information | The amount of information is large, and the amount of calculation of the intelligent algorithm is large | [5,84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Qiao, J. Analysis of Current Situation, Demand and Development Trend of Casting Grinding Technology. Micromachines 2022, 13, 1577. https://doi.org/10.3390/mi13101577
Liang H, Qiao J. Analysis of Current Situation, Demand and Development Trend of Casting Grinding Technology. Micromachines. 2022; 13(10):1577. https://doi.org/10.3390/mi13101577
Chicago/Turabian StyleLiang, Haigang, and Jinwei Qiao. 2022. "Analysis of Current Situation, Demand and Development Trend of Casting Grinding Technology" Micromachines 13, no. 10: 1577. https://doi.org/10.3390/mi13101577
APA StyleLiang, H., & Qiao, J. (2022). Analysis of Current Situation, Demand and Development Trend of Casting Grinding Technology. Micromachines, 13(10), 1577. https://doi.org/10.3390/mi13101577