Plasmonic Enhanced SERS in Ag/TiO2 Nanostructured Film: An Experimental and Theoretical Study
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussions
3.1. Structural Analysis
3.2. SERS on Ag/TiO2
3.3. Simulation
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, C.G.; Kim, J.Y.; Lee, E.; Choi, H.K.; Park, W.H.; Kim, J.; Kim, Z.H. Tip-Enhanced Raman Scattering with a Nanoparticle-Functionalized Probe. Bull. Korean Chem. Soc. 2012, 33, 1748–1752. [Google Scholar] [CrossRef]
- Meng, L.; Huang, T.; Wang, X.; Chen, S.; Yang, Z.; Ren, B. Gold-coated AFM tips for tip-enhanced Raman spectroscopy: Theoretical calculation and experimental demonstration. Opt. Express 2015, 23, 13804–13813. [Google Scholar] [CrossRef]
- Dab, C.; Awada, C.; Merlen, A.; Ruediger, A. Near-field chemical mapping of gold nanostructures using a functionalized scanning probe. Phys. Chem. Chem. Phys. 2017, 19, 31063–31071. [Google Scholar] [CrossRef]
- Nelayah, J.; Kociak, M.; Stephan, O.; Geuquet, N.; Henrard, L.; de Abajo, F.J.G.; Pastoriza-Santos, I.; Liz-Marzan, L.M.; Colliex, C. Two-Dimensional Quasistatic Stationary Short Range Surface Plasmons in Flat Nanoprisms. Nano Lett. 2010, 10, 902–907. [Google Scholar] [CrossRef]
- Awada, C.; Popescu, T.; Douillard, L.; Charra, F.; Perron, A.; Yockell-Lelievre, H.; Baudrion, A.L.; Adam, P.M.; Bachelot, R. Selective Excitation of Plasmon Resonances of Single Au Triangles by Polarization-Dependent Light Excitation. J. Phys. Chem. C 2012, 116, 14591–14598. [Google Scholar] [CrossRef]
- Luceño-Sánchez, J.A.; Díez-Pascual, A.M.; Peña Capilla, R. Materials for Photovoltaics: State of Art and Recent Developments. Int. J. Mol. Sci. 2019, 20, 976. [Google Scholar] [CrossRef]
- Wang, K.; Yoshiiri, K.; Rosa, L.; Wei, Z.; Juodkazis, S.; Ohtani, B.; Kowalska, E. TiO2/Au/TiO2 plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible-light irradiation. Catal. Today 2021, 397–399, 257–264. [Google Scholar] [CrossRef]
- Echtermeyer, T.J.; Milana, S.; Sassi, U.; Eiden, A.; Wu, M.; Lidorikis, E.; Ferrari, A.C. Surface Plasmon Polariton Graphene Photodetectors. Nano Lett. 2016, 16, 8–20. [Google Scholar] [CrossRef]
- Yang, L.; Chen, G.; Wang, J.; Wang, T.; Li, M.; Liu, J. Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection. J. Mater. Chem. 2009, 19, 6849. [Google Scholar] [CrossRef]
- Martirez, J.M.P.; Bao, J.L.; Carter, E.A. First-Principles Insights into Plasmon-Induced Catalysis. Annu. Rev. Phys. Chem. 2021, 72, 99–119. [Google Scholar] [CrossRef]
- Yoon, J.W.; Kim, J.-H.; Jo, Y.-M.; Lee, J.-H. Heterojunction between bimetallic metal-organic framework and TiO2: Band-structure engineering for effective photoelectrochemical water splitting. Nano Res. 2022, 15, 8502–8509. [Google Scholar] [CrossRef]
- Seino, M.; Henderson, E.J.; Puzzo, D.P.; Kadota, N.; Ozin, G.A. Germanium nanocrystal doped inverse crystalline silicon opal. J. Mater. Chem. 2011, 21, 15895–15898. [Google Scholar] [CrossRef]
- Gogoi, D.; Namdeo, A.; Golder, A.K.; Peela, N.R. Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting. Int. J. Hydrogen Energy 2020, 45, 2729–2744. [Google Scholar] [CrossRef]
- Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427. [Google Scholar] [CrossRef]
- Yang, L.; Sang, Q.; Du, J.; Yang, M.; Li, X.; Shen, Y.; Han, X.; Jiang, X.; Zhao, B. A Ag synchronously deposited and doped TiO2 hybrid as an ultrasensitive SERS substrate: A multifunctional platform for SERS detection and photocatalytic degradation. Phys. Chem. Chem. Phys. 2018, 20, 15149–15157. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; Peng, C.; Liang, Y.; Wang, W. Sensitive surface-enhanced Raman scattering of TiO2/Ag nanowires induced by photogenerated charge transfer. J. Colloid Interface Sci. 2017, 507, 370–377. [Google Scholar] [CrossRef]
- Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 1997, 108, 1–35. [Google Scholar] [CrossRef]
- Kolwas, K.; Derkachova, A. Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials 2020, 10, 1411. [Google Scholar] [CrossRef]
- Awada, C.; Hajlaoui, T.; Al Suliman, N.; Dab, C. Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study. Catalysts 2022, 12, 771. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, J.; Lai, W.; Yang, X.; Meng, J.; Su, L.; Gu, C.; Jiang, T.; Pun, E.Y.B.; Shao, L.; et al. Irreversible accumulated SERS behavior of the molecule-linked silver and silver-doped titanium dioxide hybrid system. Nat. Commun. 2020, 11, 1785. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Jiang, X.; Ruan, W.; Yang, J.; Zhao, B.; Xu, W.; Lombardi, J.R. Charge-Transfer-Induced Surface-Enhanced Raman Scattering on Ag−TiO2 Nanocomposites. J. Phys. Chem. C 2009, 113, 16226–16231. [Google Scholar] [CrossRef]
- Jaramillo-Fierro, X.; Capa, L.F.; Medina, F.; González, S. DFT Study of Methylene Blue Adsorption on ZnTiO3 and TiO2 Surfaces (101). Molecules 2021, 26, 3780. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Li, B.; Guo, L.; Fei, C.; Wang, Y.; Lv, L.; Liu, X.; Tian, J.; Cao, G. Dye-sensitized solar cells based on hierarchically structured porous TiO2 filled with nanoparticles. J. Mater. Chem. A 2015, 3, 11320–11329. [Google Scholar] [CrossRef]
- Shafi, M.; Zhou, M.; Duan, P.; Liu, W.; Zhang, W.; Zha, Z.; Gao, J.; Wali, S.; Jiang, S.; Man, B.; et al. Highly sensitive and recyclable surface-enhanced Raman scattering (SERS) substrates based on photocatalytic activity of ZnSe nanowires. Sensors Actuators B Chem. 2022, 356, 131360. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, L.; Wang, X.-Y.; Song, G.; You, L.-J.; Li, J.-M. Core-satellite Ag/TiO2/Ag composite nanospheres for multiple SERS applications in solution by a portable Raman spectrometer. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 584, 124013. [Google Scholar] [CrossRef]
- Shim, K.-D.; Jang, E.-S. SERS Signal Enhancement of Methylene Blue-embedded Agglomerated Gold Nanorod@SiO2 Core@Shell Composites. Bull. Korean Chem. Soc. 2018, 39, 936–940. [Google Scholar] [CrossRef]
- Vu, X.H.; Dien, N.D.; Ha Pham, T.T.; Trang, T.T.; Ca, N.X.; Tho, P.T.; Vinh, N.D.; Van Do, P. The sensitive detection of methylene blue using silver nanodecahedra prepared through a photochemical route. RSC Adv. 2020, 10, 38974–38988. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Ghosh, G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 1999, 163, 95–102. [Google Scholar] [CrossRef]
- Awada, C.; Dab, C.; Grimaldi, M.G.; Alshoaibi, A.; Ruffino, F. High optical enhancement in Au/Ag alloys and porous Au using Surface-Enhanced Raman spectroscopy technique. Sci. Rep. 2021, 11, 4714. [Google Scholar] [CrossRef] [PubMed]
- Dab, C.; Thomas, R.; Ruediger, A. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures. RSC Adv. 2018, 8, 19616–19626. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awada, C. Plasmonic Enhanced SERS in Ag/TiO2 Nanostructured Film: An Experimental and Theoretical Study. Micromachines 2022, 13, 1595. https://doi.org/10.3390/mi13101595
Awada C. Plasmonic Enhanced SERS in Ag/TiO2 Nanostructured Film: An Experimental and Theoretical Study. Micromachines. 2022; 13(10):1595. https://doi.org/10.3390/mi13101595
Chicago/Turabian StyleAwada, Chawki. 2022. "Plasmonic Enhanced SERS in Ag/TiO2 Nanostructured Film: An Experimental and Theoretical Study" Micromachines 13, no. 10: 1595. https://doi.org/10.3390/mi13101595
APA StyleAwada, C. (2022). Plasmonic Enhanced SERS in Ag/TiO2 Nanostructured Film: An Experimental and Theoretical Study. Micromachines, 13(10), 1595. https://doi.org/10.3390/mi13101595